

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2023 Semester End Make-Up Examinations

Programme: B.E.

Branch: All Branches Except CSE Stream

Course Code: 22MA1BSMCV / 22MA1BSMES / 22MA1BSMME

Course: Mathematical foundation for Civil Engineering -1/

Mathematical foundation for Electrical Stream-1/

Mathematical foundation for Mechanical Engineering Stream-1

Semester: I

Duration: 3 hrs.

Max Marks: 100

Date: 10.08.2023

Instructions: Answer any FIVE full questions, choosing one full question from each unit.

UNIT - I

1 a) If ϕ be the angle between radius vector and the tangent at any point of the curve $r = f(\theta)$, then prove that $\tan(\phi) = r \frac{d\theta}{dr}$. 6

b) Find the pedal equation of the curve $r(1 - \cos \theta) = 2a$. 7

c) Find the radius of curvature for the curve $y^2 = \frac{a^2(a-x)}{x}$ at the point $(a, 0)$. 7

UNIT - II

2 a) If $u = x^2 \tan^{-1}\left(\frac{y}{x}\right) - y^2 \tan^{-1}\left(\frac{x}{y}\right)$, then show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$. 6

b) Expand the function $f(x, y) = x^y$ in powers of $(x-1)$ and $(y-1)$ up to second degree terms and hence find $(1.1)^{1.1}$. 7

c) Find the shortest distance from origin to the surface $xyz^2 = 2$. 7

OR

3 a) If the kinetic energy K is given by $K = \frac{1}{2}mv^2$, find approximately the change in K as the mass m changes from 49 to 49.5 and the velocity v changes from 1600 to 1590. 6

b) If z is a function of x and y and $x = e^u \sin v$, $y = e^u \cos v$, then prove that $\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2 = e^{2u} \left[\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 \right]$. 7

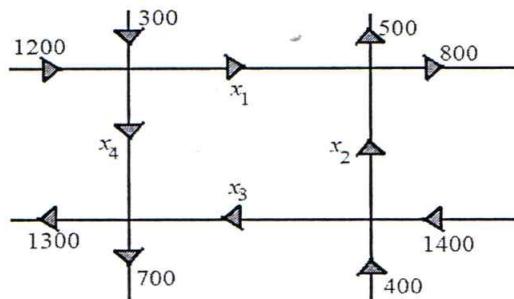
c) If $u = x\sqrt{1-y^2} + y\sqrt{1-x^2}$, $v = \sin^{-1}x + \sin^{-1}y$, then show that u and v are functionally dependent and find the functional relationship. 7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

4	<p>a) Solve: $\frac{dy}{dx} = \frac{x^2 + y^2 + 1}{2xy}$.</p> <p>b) Solve: $(xy^2 - e^{1/x^3})dx - x^2ydy = 0$.</p> <p>c) Find the value of constant d such that the parabolas $y = c_1x^2 + d$ are the orthogonal trajectories of the family of ellipses $x^2 + 2y^2 - y = c_2$.</p>	6 7 7
---	--	-------------

UNIT - IV


5	<p>a) Solve: $x \frac{d^2y}{dx^2} - \frac{2y}{x} = x + \frac{1}{x^2}$.</p> <p>b) Solve: $\frac{d^3y}{dx^3} + 2 \frac{d^2y}{dx^2} + \frac{dy}{dx} = e^{-x} + \sin 2x$.</p> <p>c) Apply the method of variation of parameters to solve the differential equation $\frac{d^2y}{dx^2} - 6 \frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$.</p>	6 7 7
---	--	-------------

OR

6	<p>a) Solve: $\frac{d^2x}{dt^2} + n^2x = k \cos(nt + \alpha)$.</p> <p>b) Solve: $(D^2 + 4D + 4)y = x^2 + 2x, y(0) = 0, y'(0) = 0$.</p> <p>c) Solve: $(2x + 3)^2y'' - (2x + 3)y' - 12y = 6x$.</p>	6 7 7
---	---	-------------

UNIT - V

7	<p>a) Apply Gauss-Seidel iteration method to solve the system of equations $x + y + 54z = 110$; $27x + 6y - z = 85$; $6x + 15y + 2z = 72$. Perform three iterations.</p> <p>b) Find all the eigen values and the corresponding eigen vectors for the matrix</p> $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ <p>c) Find the traffic flow in the net of one-way street directions as shown in the figure:</p>	6 7 7
---	---	-------------
