

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September 2024 Supplementary Examinations

Programme: B.E.

Semester: I

Branch: CV, EEE, ETE, ECE, MD, EIE, ME, IEM, AS, CH

Duration: 3 hrs.

Course Code: 22MA1BSMES / 22MA1BSMME / 22MA1BSMCV/23MA1BSCEM

Max Marks: 100

Course:

Mathematical Foundation for Electrical Stream – 1

Semester: I

Mathematical Foundation for Mechanical Engineering Stream – 1

Duration: 3 hrs.

Mathematical Foundation for Civil Engineering – 1

Max Marks: 100

Mathematical Foundation for Civil, Electrical and Mechanical Engineering Stream – 1

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Show that the pair of curves $r = a\theta$ and $r = \frac{a}{\theta}$ intersect each other orthogonally.	CO1	PO1	6
	b)	Find the pedal equation of the curve $r^m \cos(m\theta) = a^m$.	CO1	PO1	7
	c)	Find the radius of curvature at the point $(\frac{3a}{2}, \frac{3a}{2})$ on the curve $x^3 + y^3 = 3axy$.	CO1	PO1	7
UNIT - II					
2	a)	If $u = \frac{x+y}{1-xy}$, $v = \tan^{-1}x + \tan^{-1}y$ then show that u and v are functionally dependent and hence find their functional relationship.	CO1	PO1	6
	b)	If $x^x y^y z^z = c$ then show that $\frac{\partial^2 z}{\partial x \partial y} = -(x \log ex)^{-1}$ when $x = y = z$.	CO1	PO1	7
	c)	The temperature T at any point (x, y, z) in space is $T(x, y, z) = kxyz^2$ where k is a positive constant. Find the highest temperature on the surface of the sphere $x^2 + y^2 + z^2 = a^2$.	CO1	PO1	7
OR					
3	a)	Expand $f(x, y) = e^x \log_e(1+y)$ in powers x and y up to second degree term.	CO1	PO1	6
	b)	If $u = u\left[\frac{y-x}{xy}, \frac{z-x}{xz}\right]$ then show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.	CO1	PO1	7
	c)	The diameter and height of a right circular cylinder are measured as 4 cm and 6 cm respectively. The possible error in each measurement is 0.1 cm. Find approximately the corresponding errors in the volume and the surface area of the cylinder.	CO1	PO1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT – III					
4	a)	Solve: $\frac{dy}{dx} = \frac{x^2 + y^2 + 1}{2xy}$.	CO1	PO1	6
	b)	Solve: $\left(xy^2 - e^{\frac{1}{x^3}} \right) dx - x^2 y dy = 0$.	CO1	PO1	7
	c)	Show that family of confocal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$, λ being the parameter, is self orthogonal.	CO1	PO1	7
UNIT - IV					
5	a)	Apply the method of variation of parameters to solve the differential equation $y'' + y = \sec x$.	CO1	PO1	6
	b)	Solve: $(D^2 - D + 1)y = \sinh(x)$.	CO1	PO1	7
	c)	Solve: $x^2 y'' + 9y + xy' = 3x^2 + \sin[3\log(x)]$.	CO1	PO1	7
OR					
6	a)	Solve: $y'' + y' = x^2 + 2x + 4$.	CO1	PO1	6
	b)	Apply the method of variation of parameters to solve the differential equation $y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$.	CO1	PO1	7
	c)	Solve: $(x-1)^3 \frac{d^3y}{dx^3} + 2(x-1)^2 \frac{d^2y}{dx^2} - 4(x-1) \frac{dy}{dx} + 4y = 4\log(x-1)$.	CO1	PO1	7
UNIT - V					
7	a)	Show that the system of equations $3x + 4y + 5z = a$, $4x + 5y + 6z = b$ and $5x + 6y + 7z = c$ do not have a solution unless $a + c = 2b$. Also solve when $(a, b, c) = (1, 2, 3)$.	CO1	PO1	6
	b)	Apply Gauss-Seidel iteration method to obtain an approximate solution of the system of equations $20x + y - 2z = 17$, $3x + 20y - z = -18$ and $2x - 3y + 20z = 25$.	CO1	PO1	7
	c)	Find the eigenvalues and the corresponding eigenvectors of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$.	CO1	PO1	7
