

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 21MA2BSACN

Course: Advanced Calculus and Numerical Methods

Semester: II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			CO	PO	Marks
	1 a)	Evaluate $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dx dy$.	CO2	PO1	6
	b)	Evaluate $\int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.	CO2	PO1	7
	c)	Show that area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.	CO2	PO1	7
	OR				
	2 a)	Evaluate $\int_{-1}^1 \int_0^z \int_{x-z}^{x+z} (x + y + z) dx dy dz$.	CO2	PO1	6
	b)	Evaluate $I = \int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$ by changing the order of integration.	CO2	PO1	7
	c)	Evaluate the integral $\int_0^1 \frac{1}{\sqrt{1+x^4}} dx$ in terms of beta and gamma function.	CO2	PO1	7
			UNIT - II		
	3 a)	Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at the point $(2, -1, 1)$ in the direction of vector $\hat{i} + 2\hat{j} + 2\hat{k}$.	CO2	PO1	6
	b)	Find $\text{div } \vec{F}$ and $\text{curl } \vec{F}$ where $\vec{F} = \text{grad}(x^3 + y^3 + z^3 - 3xyz)$.	CO2	PO1	7
	c)	Apply the Green's theorem to evaluate $\oint_C [(y - \sin x)dx + \cos x dy]$ where C is the plane triangle formed by the lines $y = 0$, $x = \frac{\pi}{2}$ and $y = \frac{2x}{\pi}$.	CO2	PO1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR															
4	a)	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2, -1, 2).	CO2	PO1	6										
	b)	Find the work done in moving a particle in the force field $\vec{F} = 3x^2 \hat{i} + (2xz - y) \hat{j} + zk$ along the straight line from (0, 0, 0) to (2, 1, 3).	CO2	PO1	7										
	c)	Apply Stokes' theorem to evaluate $\int_C (x+y)dx + (2x-z)dy + (y+z)dz$ where C is the boundary of the triangle with vertices (2, 0, 0), (0, 3, 0) and (0, 0, 6).	CO2	PO1	7										
UNIT - III															
5	a)	Form the partial differential equation by eliminating arbitrary constants from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.	CO2	PO1	6										
	b)	Solve the partial differential equation $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$.	CO2	PO1	7										
	c)	Apply the method of separation of variables to solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ with $u(x,0) = 6e^{-3x}$.	CO2	PO1	7										
UNIT - IV															
6	a)	Apply Newton-Raphson method to find the positive root of $x^4 - x = 10$ correct to three decimal places.	CO2	PO1	6										
	b)	Find the cubic polynomial which takes the following values: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>0</td><td>1</td><td>2</td><td>3</td></tr> <tr> <td>f(x)</td><td>1</td><td>2</td><td>1</td><td>10</td></tr> </table> Hence, evaluate $f(4)$.	x	0	1	2	3	f(x)	1	2	1	10	CO2	PO1	7
x	0	1	2	3											
f(x)	1	2	1	10											
	c)	Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ using Simpson's $\frac{1}{3}$ rule by taking seven ordinates.	CO2	PO1	7										
UNIT - V															
7	a)	Approximate $y(0.1)$ and $y(0.2)$ using Taylor series method up to fourth degree terms for $\frac{dy}{dx} = x^2 y - 1$, $y(0) = 1$.	CO2	PO1	6										
	b)	Apply modified Euler's method to find an approximate value of $y(0.2)$, given that $\frac{dy}{dx} = y + e^x$, $y(0) = 0$.	CO2	PO1	7										
	c)	Apply the fourth order Runge - Kutta method to approximate $y(0.2)$, given that $\frac{dy}{dx} = x + y$, $y(0) = 1$ taking $h = 0.2$.	CO2	PO1	7										
