

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2024 Semester End Main Examinations

Programme: B.E.

Semester: II

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 21MA2BSACN

Max Marks: 100

Course: Advanced Calculus and Numerical Methods

Instructions: Answer any FIVE full questions, choosing one full question from each unit.

		UNIT - I	<i>CO</i>	<i>PO</i>	Marks
1	a)	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.	<i>COI</i>	<i>POI</i>	6
	b)	Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integrals.	<i>COI</i>	<i>POI</i>	7
	c)	Prove that $\int_0^{\pi/2} \sqrt{\sin \theta} d\theta \times \int_0^{\pi/2} \frac{1}{\sqrt{\sin \theta}} d\theta = \pi$.	<i>COI</i>	<i>POI</i>	7
		OR			
2	a)	Evaluate: $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$ by changing the order of integration.	<i>COI</i>	<i>POI</i>	6
	b)	Obtain the area enclosed by the curve $r = a(1 + \cos \theta)$ between $\theta = 0$ and $\theta = \pi$ using double integration.	<i>COI</i>	<i>POI</i>	7
	c)	Show that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ with the usual notations.	<i>COI</i>	<i>POI</i>	7
		UNIT - II			
3	a)	Find the directional derivative of $\phi = x^2yz + 4xz^2$ at $(1, -2, -1)$ in the direction of the vector $2\hat{i} - \hat{j} - 2\hat{k}$.	<i>COI</i>	<i>POI</i>	6
	b)	If $\vec{F} = \nabla(xy^3z^2)$, find $\text{div } \vec{F}$ and $\text{curl } \vec{F}$ at the point $(1, -1, 1)$.	<i>COI</i>	<i>POI</i>	7
	c)	Apply Stokes' theorem to evaluate $\int_C (y^2 + x^2) dx - 2xy dy$, where C is the rectangle bounded by the lines $x = \pm a$, $y = 0$ and $y = b$.	<i>COI</i>	<i>POI</i>	7
		OR			
4	a)	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at $(2, -1, 2)$.	<i>COI</i>	<i>POI</i>	6
	b)	Show that $\vec{f} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$ is irrotational. Also find a scalar function ϕ such that $\vec{f} = \nabla\phi$.	<i>COI</i>	<i>POI</i>	7
	c)	Apply Green's theorem to evaluate $\int_C (xy + y^2) dx + x^2 dy$ where C is the closed curve of the region bounded by $y = x$ and $y = x^2$.	<i>COI</i>	<i>POI</i>	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III																	
5	a)	Solve $\frac{\partial^2 z}{\partial x^2} = xy$ by direct integration.	<i>CO1</i>	<i>PO1</i>	6												
	b)	Form the partial differential equation by eliminating the arbitrary function from $f(x + y + z, x^2 + y^2 + z^2) = 0$.	<i>CO1</i>	<i>PO1</i>	7												
	c)	Solve: $(y - z)p + (z - x)q = (x - y)$.	<i>CO1</i>	<i>PO1</i>	7												
UNIT - IV																	
6	a)	Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ by using Simpson's 1/3 rd rule considering seven ordinates.	<i>CO1</i>	<i>PO1</i>	6												
	b)	The area A of a circle of diameter d is given in the table below: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>d</td><td>80</td><td>85</td><td>90</td><td>95</td><td>100</td></tr> <tr> <td>A</td><td>5026</td><td>5674</td><td>6362</td><td>7088</td><td>7854</td></tr> </table> Calculate the area of the circle of diameter 105 using appropriate interpolation formula.	d	80	85	90	95	100	A	5026	5674	6362	7088	7854	<i>CO2</i>	<i>PO1</i>	7
d	80	85	90	95	100												
A	5026	5674	6362	7088	7854												
	c)	Apply Newton-Raphson method to find a real root of $x \sin x + \cos x = 0$ near $x = \pi$ correct to 4 decimal places.	<i>CO1</i>	<i>PO1</i>	7												
UNIT - V																	
7	a)	Apply Taylor's series method to solve $\frac{dy}{dx} = x^2 + y^2$ given $y(0) = 1$ by considering the terms up to third degree. Hence find $y(0.1)$.	<i>CO1</i>	<i>PO1</i>	6												
	b)	Apply Runge-Kutta method of order four to find $y(0.2)$ given $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$ taking $h = 0.2$.	<i>CO1</i>	<i>PO1</i>	7												
	c)	Solve the differential equation $\frac{dy}{dx} = \log_{10}(x + y)$ given the initial condition $y(1) = 2$ by using Modified Euler's method at the points $x = 1.2$. Take the step size $h = 0.2$ and carry out two iterations.	<i>CO1</i>	<i>PO1</i>	7												
