

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 21MA2BSACN

Course: Advanced Calculus and Numerical Methods

Semester: II

Duration: 3 hrs.

Max Marks: 100

Instructions:

1. All units have internal choice, answer one complete question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Evaluate $\iint_R xy \, dx \, dy$, where R is the region bounded by x -axis, the line $x = 2a$ and the curve $x^2 = 4ay$.	1	1	6
	b)	Apply double integral to find the area of the cardioid $r = a(1 + \cos \theta)$.	1	1	7
	c)	With usual notations, derive the relation between beta and gamma functions in the form $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.	1	1	7
OR					
2	a)	Evaluate $\int_0^a \int_y^a \frac{xdx \, dy}{\sqrt{x^2 + y^2}}$ by changing the order of integration,	1	1	6
	b)	Evaluate $\int_0^a \int_0^{\sqrt{a^2 - z^2}} \int_0^{\sqrt{a^2 - y^2 - z^2}} x \, dx \, dy \, dz$.	1	1	7
	c)	Prove that $\int_0^\infty xe^{-x^8} dx \times \int_0^\infty x^2 e^{-x^4} dx = \frac{\pi}{16\sqrt{2}}$.	1	1	7
UNIT - 2					
3	a)	If $\vec{F} = \text{grad}(x^3 + y^3 + z^3 - 3xyz)$ then find $\text{div } \vec{F}$ and $\text{curl } \vec{F}$.	1	1	6
	b)	Find the constants a and b so that the surface $ax^2 - byz = (a+2)x$ is orthogonal to the surface $4x^2y + z^3 = 4$ at the point $(1, -1, 2)$.	1	1	7
	c)	Apply Green's theorem to evaluate $\int_C (3x - 8y^2) \, dx + (4y - 6xy) \, dy$, where C is bounded by $x = 0$, $y = 0$ and $x + y = 1$.	1	1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR																									
4	a)	Find the directional derivative of $\phi = x^2yz + 4xz^2$ at $(1, -2, -1)$ in the direction of the vector $2\hat{i} - \hat{j} - 2\hat{k}$.	1	1	6																				
	b)	A fluid motion is given by $\vec{V} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$. Is this motion irrotational? If so, find the velocity potential.	2	1	7																				
	c)	Apply Stokes' theorem to evaluate $\int_C (y^2 + x^2)dx - 2xydy$, where C is the rectangle bounded by the lines $x = \pm a$, $y = 0$ and $y = b$.	1	1	7																				
UNIT - III																									
5	a)	Form the partial differential equation by eliminating the arbitrary constants from $z = a \log \left\{ \frac{b(y-1)}{1-x} \right\}$.	1	1	6																				
	b)	Solve the partial differential equation $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$.	1	1	7																				
	c)	Derive the one-dimensional heat equation in the form $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$.	1	1	7																				
OR																									
6	a)	Form the partial differential equation by eliminating the arbitrary function from $z = x^n f\left(\frac{y}{x}\right)$.	1	1	6																				
	b)	Solve $\frac{\partial^2 z}{\partial x^2} = \cos x$ by using direct integration method.	1	1	7																				
	c)	Derive the one-dimensional wave equation in the form $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.	1	1	7																				
UNIT - 4																									
7	a)	Apply Newton-Raphson method to approximate the root of $x \tan x + 1 = 0$ near $x = 2.5$. Perform 3 iterations.	1	1	6																				
	b)	The area of a circle (A) corresponding to diameter (D) is given below:	1	1	7																				
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>D</td><td>80</td><td>85</td><td>90</td><td>95</td><td>100</td></tr> <tr> <td>A</td><td>5026</td><td>5674</td><td>6362</td><td>7088</td><td>7854</td></tr> </table> <p>Find the area corresponding to diameter 105 using an appropriate interpolation formula.</p>	D	80		85	90	95	100	A	5026	5674	6362	7088	7854										
D	80	85	90	95	100																				
A	5026	5674	6362	7088	7854																				
	c)	A rocket is launched from the ground. Its acceleration f , generated during the first 80 seconds is tabulated below. Apply Simpson's $\left(\frac{1}{3}\right)^{\text{rd}}$ rule to find the velocity of the rocket at $t = 80$.	1	1	7																				
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>$t(\text{sec})$</td><td>0</td><td>10</td><td>20</td><td>30</td><td>40</td><td>50</td><td>60</td><td>70</td><td>80</td></tr> <tr> <td>$f(\text{cms}^{-2})$</td><td>30</td><td>31.63</td><td>33.34</td><td>35.47</td><td>37.75</td><td>40.33</td><td>43.25</td><td>46.69</td><td>50.67</td></tr> </table>	$t(\text{sec})$	0	10	20	30	40	50	60	70	80	$f(\text{cms}^{-2})$	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67			
$t(\text{sec})$	0	10	20	30	40	50	60	70	80																
$f(\text{cms}^{-2})$	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67																
		OR																							

8	a)	Apply Lagrange's interpolation formula to find y at $x=10$ given <table border="1"> <tr> <td>x</td><td>5</td><td>6</td><td>9</td><td>11</td></tr> <tr> <td>y</td><td>12</td><td>13</td><td>14</td><td>16</td></tr> </table>	x	5	6	9	11	y	12	13	14	16	1	1	6		
x	5	6	9	11													
y	12	13	14	16													
	b)	The following table gives the temperature θ of a cooling body at different instant of time t (in seconds) <table border="1"> <tr> <td>t</td><td>1</td><td>3</td><td>5</td><td>7</td><td>9</td></tr> <tr> <td>θ</td><td>85.3</td><td>74.5</td><td>67</td><td>60.5</td><td>54.3</td></tr> </table> Calculate θ at $t = 2$ using Newton's forward interpolation formula.	t	1	3	5	7	9	θ	85.3	74.5	67	60.5	54.3	1	1	7
t	1	3	5	7	9												
θ	85.3	74.5	67	60.5	54.3												
	c)	Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cos(x)} dx$ by dividing the interval into six equal parts using Simpson's 3/8 th rule.	1	1	7												
UNIT - 5																	
9	a)	Apply Taylor's series method to approximate the value of y at $x=0.1$ for $\frac{dy}{dx} = x^2 + y^2$ and $y(0) = 1$ considering up to third degree.	1	1	6												
	b)	Apply Runge-Kutta method to solve the differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$ at $x=0.2$ taking $y(0)=1$ and $h=0.2$.	1	1	7												
	c)	Compute y at $x=0.8$ by applying Milne's predictor-corrector method to approximate the differential equation $\frac{dy}{dx} = x - y^2$ with $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$ and $y(0.6) = 0.1762$.	1	1	7												
OR																	
10	a)	Apply Milne's predictor-corrector method to find $y(0.4)$ given $\frac{dy}{dx} = 2e^x - y$ with $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.04$ and $y(0.3) = 2.09$.	1	1	6												
	b)	Apply Runge-Kutta method of fourth order to find approximate value of y at $x=0.2$ given $\frac{dy}{dx} = \frac{(y^2 - x^2)}{(y^2 + x^2)}$ with $y(0) = 1$, taking $h = 0.2$.	1	1	7												
	c)	Apply Modified Euler's method to find the approximate solution of $y' = y + e^x$, $y(0) = 0$ at $x=0.2$ taking $h=0.2$. Perform two iterations.	1	1	7												
