

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December / January 2024 Supplementary Examinations

Programme: B.E.

Semester: II

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 21MA2BSACN

Max Marks: 100

Course: Advanced Calculus and Numerical Methods

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Evaluate $\int_{-2}^2 \int_0^{\sqrt{4-x^2}} (2-x) dy dx$ by changing the order of integration.	CO2	PO1	6
		b)	Find the area of the cardioid $r = a(1 + \cos\theta)$.	CO2	PO1	7
		c)	Prove that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.	CO2	PO1	7
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Evaluate $\int_0^a \int_0^{\sqrt{a^2-y^2}} y \sqrt{x^2+y^2} dx dy$ by changing into polar coordinates.	CO2	PO1	6
		b)	Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integrals.	CO2	PO1	7
		c)	Show that $\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin\theta}} \times \int_0^{\frac{\pi}{2}} \sqrt{\sin\theta} d\theta = \pi$.	CO2	PO1	7
UNIT - II						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	Find the directional derivative of $\Phi = 4xz^3 - 3x^2y^2z$ at $(2, -1, 2)$ along $2i - 3j + 6k$.	CO2	PO1	6
		b)	Show that $\vec{F} = (2xy^2 + yz)\hat{i} + (2x^2y + xz + 2yz^2)\hat{j} + (2y^2z + xy)\hat{k}$ is irrotational. Also find a scalar function ϕ such that $\vec{F} = \nabla\phi$.	CO2	PO1	7
		c)	Verify Green's theorem for $\oint_C (xy + y^2) dx + x^2 dy$ where C is the closed curve of the region bounded by $y = x$ and $y = x^2$.	CO2	PO1	7
OR						

4	a)	Find the angle between the normals to the surface $x y = z^2$ at $(4, 1, 2)$ and $(3, 3, -3)$.	CO2	PO1	6												
	b)	If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = \vec{r} $ prove that $\nabla \cdot (r^n \vec{r}) = (n+3)r^n$.	CO2	PO1	7												
	c)	Apply Stokes' theorem to evaluate $\oint_C (y^2 + x^2)dx - 2xydy$, where C is the rectangle bounded by the lines $x = \pm a$, $y = 0$, $y = b$.	CO2	PO1	7												
UNIT - III																	
5	a)	Form the partial differential equation by eliminating the arbitrary constants from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.	CO2	PO1	6												
	b)	Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$.	CO2	PO1	7												
	c)	Derive the one-dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.	CO2	PO1	7												
UNIT - IV																	
6	a)	Apply Newton – Raphson method to find the real root of the equation $xe^x - 2 = 0$ correct to three decimal places.	CO2	PO1	6												
	b)	The area of a circle (A) corresponding to diameter (D) is given below: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>D</td><td>80</td><td>85</td><td>90</td><td>95</td><td>100</td></tr> <tr> <td>A</td><td>5026</td><td>5674</td><td>6362</td><td>7088</td><td>7854</td></tr> </table> <p>Approximate the area when $D = 105$ using appropriate interpolation formula.</p>	D	80	85	90	95	100	A	5026	5674	6362	7088	7854	CO2	PO1	7
D	80	85	90	95	100												
A	5026	5674	6362	7088	7854												
	c)	Apply Simpson's $\frac{3}{8}^{th}$ rule to evaluate $\int_0^1 \frac{1}{1+x} dx$ by taking seven ordinates. Hence deduce the value of $\log_e 2$.	CO2	PO1	7												
UNIT - V																	
7	a)	Apply Taylor series method to solve $\frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$ at $x = 0.1$ and 0.2 up to the third degree.	CO2	PO1	6												
	b)	Apply modified Euler's method to find the approximate value of y at $x = 1.2$ for the differential equation $\frac{dy}{dx} = 1 + \frac{y}{x}$, $y = 2$ at $x = 1$ by taking step size $h = 0.2$.	CO2	PO1	7												
	c)	Apply Runge-Kutta method of fourth order to find $y(0.2)$ for the differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$ taking $h = 0.2$.	CO2	PO1	7												