

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Program: B.E.

Semester: II

Branch: AS / CH / CV / IEM / ME

Duration: 3 hrs.

Course Code: 23MA2BSMCM / 22MA2BSMCV / 22MA2BSMME

Max Marks: 100

Course:

Mathematical foundation for Civil and Mechanical Engineering stream – 2

Mathematical foundation for Civil Engineering – 2

Mathematical foundation for Mechanical Engineering Stream – 2

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - 1	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Evaluate $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dy dx$.	1	1	6
		b)	Evaluate $\int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} dx dy$ by changing the variables into polar coordinates.	1	1	7
		c)	Prove that $\int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} d\theta \times \int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta = \pi$.	1	1	7
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Evaluate $\int_{-1}^1 \int_0^z \int_{x-z}^{x+z} (x + y + z) dy dx dz$.	1	1	6
		b)	Evaluate $\int_0^a \int_y^a \frac{x}{x^2+y^2} dx dy$ by changing the order of integration.	1	1	7
		c)	Express $\int_0^2 (4 - x^2)^{\frac{3}{2}} dx$ in terms of the Beta function.	1	1	7
UNIT - 2						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 - z = 3$ at the point $(2, -1, 2)$.	2	1	6
		b)	Show that the vector field $\vec{F} = (x^2 - y^2 + x)\hat{i} - (2xy + y)\hat{j}$ is an irrotational vector field and hence find scalar potential φ such that $\vec{F} = \nabla \varphi$.	2	1	7
		c)	Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$ along the straight line from $(0, 0, 0)$ to $(2, 1, 3)$.	2	1	7
UNIT - 3						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	4	a)	Form the partial differential equation by eliminating arbitrary function from $\varphi(xy + z^2, x + y + z) = 0$.	1	1	6
		b)	Solve $(mz - ny)p + (nx - lz)q = (ly - mx)$.	1	1	7

	c)	Solve the partial differential equation $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} = 0$ using the method of separation of variables.	1	1	7										
		OR													
5	a)	Form the partial differential equation by eliminating arbitrary constants from $z = xy + y\sqrt{x^2 - a^2} + b$.	1	1	6										
	b)	Solve $(x^2 - y^2 - z^2)p + 2xyq = 2xz$.	1	1	7										
	c)	Solve $\frac{\partial^3 z}{\partial x^2 \partial y} + 18xy^2 + \sin(2x - y) = 0$ by direct integration.	1	1	7										
		UNIT - 4													
6	a)	Apply Newton - Raphson iterative method to find the real root of $x \log_{10} x = 1.2$ near $x = 2.5$ correct to four decimal places.	1	1	6										
	b)	Compute the approximate value of y for $x = 5$ by using appropriate Newton's interpolation for the following data:	1	1	7										
		<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>x</td> <td>4</td> <td>6</td> <td>8</td> <td>10</td> </tr> <tr> <td>y</td> <td>1</td> <td>3</td> <td>8</td> <td>16</td> </tr> </table>	x	4	6	8	10	y	1	3	8	16			
x	4	6	8	10											
y	1	3	8	16											
	c)	Apply Lagrange's interpolation formula to find the value of y when $x = 10$, if the following values of x and y are given:	1	1	7										
		<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>x</td> <td>5</td> <td>6</td> <td>9</td> <td>11</td> </tr> <tr> <td>y</td> <td>12</td> <td>13</td> <td>14</td> <td>16</td> </tr> </table>	x	5	6	9	11	y	12	13	14	16			
x	5	6	9	11											
y	12	13	14	16											
		UNIT - 5													
7	a)	Apply Taylor series method to find the value of y at $x = 0.1$ given that $\frac{dy}{dx} = x - y^2$, $y(0) = 1$ taking terms up to fourth degree.	1	1	6										
	b)	Apply Modified Euler's method to compute y at $x = 0.1$ given $\frac{dy}{dx} = 3x + \frac{1}{2}y$ with $y(0) = 1$ taking $h = 0.1$. Perform three modifications.	1	1	7										
	c)	Find the approximate values of y at $x = 0.6$ by Runge-Kutta method given that $y = 0.41$ when $x = 0.4$ and $\frac{dy}{dx} = \sqrt{x+y}$ taking $h = 0.2$.	1	1	7										
