

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September 2024 Supplementary Examinations

Program: B.E.

Semester: II

Branch: AS / CH / CV / IEM / ME

Duration: 3 hrs.

Course Code: 23MA2BSMCM / 22MA2BSMCV / 22MA2BSMME

Max Marks: 100

Course:

Mathematical foundation for Civil and Mechanical Engineering stream – 2

Mathematical foundation for Civil Engineering – 2

Mathematical foundation for Mechanical Engineering Stream – 2

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy \, dy \, dx$.	1	1	6
	b)	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 \, dy \, dx$ by changing the order of integration.	1	1	7
	c)	Prove that $\int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} d\theta \times \int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta = \pi$.	1	1	7
OR					
2	a)	Express $\int_0^{\infty} 4x^4 e^{-x^4} dx$ in terms of the Gamma function.	1	1	6
	b)	Find the area of the cardioid $r = a(1 + \cos \theta)$ using double integration.	2	1	7
	c)	Evaluate $\int_{-1}^1 \int_0^z \int_{x-z}^{x+z} (x + y + z) \, dy \, dx \, dz$.	1	1	7
UNIT - 2					
3	a)	Find the directional derivative of $\varphi = x^2yz + 4xz^2$ at the point $(1, -2, -1)$ in the direction of $2\hat{i} - \hat{j} - 2\hat{k}$.	2	1	6
	b)	Evaluate $\text{div } \vec{F}$ and $\text{curl } \vec{F}$ at the point $(1, 2, 3)$ given $\vec{F} = x^2yz\hat{i} + xy^2z\hat{j} + xyz^2\hat{k}$.	1	1	7
	c)	Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$ along the straight line from $(0, 0, 0)$ to $(2, 1, 3)$.	2	1	7
UNIT - 3					
4	a)	Form a partial differential equation by eliminating arbitrary function from $\varphi(x + y + z, x^2 + y^2 + z^2) = 0$.	1	1	6
	b)	Solve $(y - z)p + (z - x)q = (x - y)$.	1	1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Solve $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$ by using method of separation of variables.	1	1	7										
		OR													
5	a)	Form the partial differential equation by eliminating arbitrary constants from $z = xy + y\sqrt{x^2 - a^2} + b$.	1	1	6										
	b)	Solve: $\frac{\partial^2 u}{\partial x^2} = x + y$ by direct integration method.	1	1	7										
	c)	Derive the one-dimensional heat equation.	2	1	7										
		UNIT - 4													
6	a)	Apply Newton-Raphson iterative method to find the real root of $x^3 - 2x - 5 = 0$ correct to three decimal places.	1	1	6										
	b)	Apply Lagrange's formula to approximate $f(3)$ for data given below.	1	1	7										
		<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>x</td> <td>0</td> <td>1</td> <td>2</td> <td>5</td> </tr> <tr> <td>$f(x)$</td> <td>2</td> <td>3</td> <td>12</td> <td>147</td> </tr> </table>	x	0	1	2	5	$f(x)$	2	3	12	147			
x	0	1	2	5											
$f(x)$	2	3	12	147											
	c)	Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ by applying Simpson's $\frac{3}{8}$ rule taking six equal subintervals.	1	1	7										
		UNIT - 5													
7	a)	Apply Taylor series method to find y at $x = 0.1$ considering terms up to third degree, given that $\frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$.	1	1	6										
	b)	Apply Milne's predictor-corrector method to compute $y(0.8)$ given $\frac{dy}{dx} = x - y^2$, $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$ and $y(0.6) = 0.1762$. Use the corrector formula once.	1	1	7										
	c)	Apply fourth order Runge-Kutta method to find y at $x = 0.1$ given that $\frac{dy}{dx} = 3e^x + 2y$, $y(0) = 0$ and $h = 0.1$.	1	1	7										
