

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2024 Semester End Main Examinations

Programme: B.E.

Semester: II

Branch: CS, IS, ML, BT, DS, IOT, CSB

Duration: 3 hrs.

Course Code: 22MA2BSMCS

Max Marks: 100

Course: Mathematical Foundation for Computer Science Stream-2

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Evaluate $\iint_R xy \, dy \, dx$ by changing the order of integration, where R is the region bounded by x -axis, ordinate $x = 2a$ and the parabola $x^2 = 4ay$.	CO1	PO1	6
	b)	Find the area lying inside the cardioid $r = a(1 + \cos \theta)$ and outside the circle $r = a$.	CO2	PO1	7
	c)	Using the definition $\Gamma(n) = 2 \int_0^\infty e^{-x^2} x^{2n-1} dx$, prove that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.	CO1	PO1	7
OR					
2	a)	Evaluate $\iint_{0 \leq y \leq x} \frac{x^2}{\sqrt{x^2 + y^2}} dx \, dy$ by changing into polar coordinates.	CO1	PO1	6
	b)	Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.	CO2	PO1	7
	c)	Prove that $\int_0^\infty x^2 e^{-x^4} dx \times \int_0^\infty e^{-x^4} dx = \frac{\pi}{8\sqrt{2}}$.	CO1	PO1	7
UNIT - II					
3	a)	Prove that the cylindrical polar coordinate system is orthogonal curvilinear coordinate system.	CO1	PO1	6
	b)	Find the constants a and b so that the surfaces $\phi = ax^2 y + z^3$ and $5x^2 - byz = 9x$ intersect orthogonally at the point $(1, -1, 2)$.	CO1	PO1	7
	c)	Show that the fluid motion is given by \vec{F} is irrotational, where $\vec{F} = (6xy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (3xz^2 - y)\hat{k}$ and find its scalar potential.	CO1	PO1	7
UNIT - III					
4	a)	Determine whether the set $V = \{(x, y) / x, y \in R\}$ is a vector space over the field of reals when the vector addition is the standard vector addition and the scalar multiplication is defined as $k.(x, y) = (0, ky)$.	CO1	PO1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Find the basis and dimension of the row space, column space and null space of the matrix</p> $\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & 1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}.$	CO1	PO1	7																				
	c)	<p>Find the matrix of linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by $T(a, b) = (a+b, a-b, 2b)$ with respect to the bases $B_1 = \{(1, 0), (1, 1)\}$ for \mathbb{R}^2 and $B_2 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ for \mathbb{R}^3.</p>	CO1	PO1	7																				
OR																									
5	a)	<p>Determine the vectors $V_1 = (1, 2, -3, 1)$, $V_2 = (3, 7, 1, -2)$ and $V_3 = (1, 3, 7, -4)$ in \mathbb{R}^4 are linearly dependent or independent.</p>	CO1	PO1	6																				
	b)	<p>Determine whether $(1, 1, 1, 1)$, $(1, 2, 3, 2)$, $(2, 5, 6, 4)$ and $(2, 6, 8, 5)$ form a basis of \mathbb{R}^4. If not find the dimension of the subspace they span.</p>	CO1	PO1	7																				
	c)	<p>Find the bases of the range space, null space and hence verify the rank-nullity theorem for the linear transformation $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(x, y, z) = (x+2y-z, y+z, x+y-2z)$.</p>	CO1	PO1	7																				
UNIT - IV																									
6	a)	<p>Apply Newton-Raphson method to find the root of the equation $x \log_{10} x = 1.2$ in (2,3) correct to four decimal places.</p>	CO1	PO1	6																				
	b)	<p>The following table gives the viscosity of an oil as a function of temperature. Find the viscosity of oil at a temperature of 140^0C using appropriate interpolation formula.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Temp</td> <td>110</td> <td>130</td> <td>160</td> <td>190</td> </tr> <tr> <td>Viscosity</td> <td>10.8</td> <td>8.1</td> <td>5.5</td> <td>4.8</td> </tr> </table>	Temp	110	130	160	190	Viscosity	10.8	8.1	5.5	4.8	CO2	PO1	7										
Temp	110	130	160	190																					
Viscosity	10.8	8.1	5.5	4.8																					
	c)	<p>A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given in the table below. Using Simpson's 1/3rd rule, find the velocity of the rocket at $t = 80\text{sec}$.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>t (sec)</td> <td>0</td> <td>10</td> <td>20</td> <td>30</td> <td>40</td> <td>50</td> <td>60</td> <td>70</td> <td>80</td> </tr> <tr> <td>f (cm/sec2)</td> <td>30</td> <td>31.63</td> <td>33.34</td> <td>35.47</td> <td>37.75</td> <td>40.33</td> <td>43.25</td> <td>46.69</td> <td>50.67</td> </tr> </table>	t (sec)	0	10	20	30	40	50	60	70	80	f (cm/sec 2)	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67	CO2	PO1	7
t (sec)	0	10	20	30	40	50	60	70	80																
f (cm/sec 2)	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67																
UNIT - V																									
7	a)	<p>Solve the initial value problem $y' = 2y + 3e^x$, $y(0) = 0$ at $x = 0.1$ and $x = 0.2$ using Taylor's series method by considering terms up to fourth degree.</p>	CO1	PO1	6																				
	b)	<p>Apply modified Euler's formula to solve $y' = xy + y^2$, $y(0) = 1$ at $x = 0.2$ by taking $h = 0.2$.</p>	CO1	PO1	7																				
	c)	<p>Using Runge-Kutta method of fourth-order, solve the differential equation $y' = \frac{2xy + e^x}{x^2 + xe^x}$, with $y(1) = 0$ at $x = 1.1$ by taking $h = 0.1$.</p>	CO1	PO1	7																				