

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Semester: II

Branch: CS, IS, ML, BT, DS, IOT, CSB

Duration: 3 hrs.

Course Code: 22MA2BSMCS

Max Marks: 100

Course: Mathematical Foundation for Computer Science Stream-2

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Evaluate the integral $\int_0^1 \int_{\sqrt{y}}^{2-y} xy \, dx \, dy$ by changing the order of integration.	CO1	PO1	6
		b)	Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ using triple integrals.	CO1	PO1	7
		c)	Using the definition $\Gamma(n) = 2 \int_0^{\infty} e^{-x^2} x^{2n-1} \, dx$, prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.	CO1	PO1	7
OR						
	2	a)	Evaluate the integral $\int_{-3}^3 \int_0^{\sqrt{9-x^2}} \sqrt{x^2 + y^2} \, dy \, dx$ by changing into polar form.	CO1	PO1	6
		b)	Find the area lying inside the cardioid $r = a(1 + \cos \theta)$ and outside the circle $r = a$.	CO1	PO1	7
		c)	Prove that $\int_0^{\infty} x e^{-x^8} \, dx \times \int_0^{\infty} x^2 e^{-x^4} \, dx = \frac{\pi}{16\sqrt{2}}$.	CO1	PO1	7
UNIT - II						
	3	a)	Prove that the cylindrical polar coordinate system is orthogonal curvilinear coordinate system.	CO1	PO1	6
		b)	If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = \vec{r} $, then prove that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$.	CO1	PO1	7
		c)	Show that the vector field $\vec{F} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$ is irrotational. Also find its scalar potential.	CO1	PO1	7

UNIT - III																	
4	a)	Express $v = (3, 7, -4)$ in \mathbb{R}^3 as a linear combination of the vectors $u_1 = (1, 2, 3)$, $u_2 = (2, 3, 7)$, $u_3 = (3, 5, 6)$.	CO1	PO1	6												
	b)	Let \mathbb{R}^+ be the set of all positive real numbers. Define vector addition as $u+v=uv \forall u,v \in \mathbb{R}^+$ and scalar multiplication $k.u=u^k \forall k \in \mathbb{R}$. Show that \mathbb{R}^+ is a vector space over the field of real numbers.	CO1	PO1	7												
	c)	Find the conditions a, b, c so that $v = (a, b, c)$ in \mathbb{R}^3 belongs to $W = \text{span}(u_1, u_2, u_3)$ where $u_1 = (1, 2, 0)$, $u_2 = (-1, 1, 2)$, $u_3 = (3, 0, -4)$.	CO1	PO1	7												
OR																	
5	a)	Find the basis and dimension of the subspace W spanned by $u_1 = t^3 - 2t^2 + 4t + 1$, $u_2 = 2t^3 - 3t^2 + 9t - 1$, $u_3 = t^3 + 6t - 5$, $u_4 = 2t^3 - 5t^2 + 7t + 5$.	CO1	PO1	6												
	b)	Find the matrix of Linear transformation Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ whose matrix is $A = \begin{bmatrix} 1 & -1 \\ -2 & 3 \\ 0 & 1 \end{bmatrix}$ relative to the basis $B = \{(1,1), (0,2)\}$ for \mathbb{R}^2 and $B' = \{(0,1,1), (1,0,1), (1,1,0)\}$ for \mathbb{R}^3 .	CO1	PO1	7												
	c)	Let $G: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the linear mapping defined by $G(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$. Find a basis and the dimension of (i) the image of G (ii) the kernel of G .	CO1	PO1	7												
UNIT - IV																	
6	a)	Apply Newton-Raphson method to find the real root of the equation $3x = \cos x + 1$ that lies near $x = 0.6$ correct to 4 decimal places.	CO1	PO1	6												
	b)	The area of a circle (A) corresponding to diameter (D) is given below: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td style="text-align: center;">D</td><td style="text-align: center;">80</td><td style="text-align: center;">85</td><td style="text-align: center;">90</td><td style="text-align: center;">95</td><td style="text-align: center;">100</td></tr> <tr> <td style="text-align: center;">A</td><td style="text-align: center;">5026</td><td style="text-align: center;">5674</td><td style="text-align: center;">6362</td><td style="text-align: center;">7088</td><td style="text-align: center;">7854</td></tr> </table> Find the area corresponding to diameter 105 using an appropriate interpolation formula.	D	80	85	90	95	100	A	5026	5674	6362	7088	7854	CO1	PO1	7
D	80	85	90	95	100												
A	5026	5674	6362	7088	7854												
	c)	Evaluate $\int_0^1 \frac{x dx}{1+x^2}$ by Weddle's rule taking seven ordinates and hence find $\log_e 2$.	CO1	PO1	7												

UNIT - V					
7	a)	Apply Taylor series method to find an approximate solution up to third degree term for the initial value problem $y' = x^2 y - 1$, $y(0) = 1$ at $x = 0.1$ and $x = 0.2$.	CO1	PO1	6
	b)	Apply Modified Euler's method to find the solution of the differential equation $y' = x + \sqrt{ y }$, $y = 1$ when $x = 0$ at the point $x = 0.2$ by taking $h = 0.2$. Carry out three modifications.	CO1	PO1	7
	c)	Apply Milne's predictor-corrector method to find the solution of the equation $y' = 2e^x - y$ at the point $x = 0.4$, given that $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.04$ and $y(0.3) = 2.09$.	CO1	PO1	7
