

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Semester: II

Branch: CS, IS, ML, BT, DS, IOT, CSB

Duration: 3 hrs.

Course Code: 22MA2BSMCS

Max Marks: 100

Course: Mathematical Foundation for Computer Science Stream-2

Date: 27.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			CO	PO	Marks
1	a)	Change the order of integration and evaluate $\int_0^1 \int_{\sqrt{y}}^{2-y} xy \, dx \, dy$.	CO1	PO1	06
	b)	Find the volume of the tetrahedron bounded by the planes $x = 0, y = 0, z = 0, \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.	CO1	PO1	07
	c)	Prove that $\beta(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.	CO1	PO1	07
OR					
2	a)	Evaluate $\int_{-c}^c \int_{-b}^b \int_{-a}^a (x^2 + y^2 + z^2) \, dz \, dy \, dx$.	CO1	PO1	06
	b)	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} \, dx \, dy$ by changing into polar coordinates.	CO1	PO1	07
	c)	Show that $\int_0^\infty x e^{-x^8} \, dx \times \int_0^\infty x^2 e^{-x^4} \, dx = \frac{\pi}{16\sqrt{2}}$.	CO1	PO1	07
UNIT - II					
3	a)	Show that $\vec{F} = \frac{x \vec{i} + y \vec{j}}{x^2 + y^2}$ is solenoidal and also irrotational.	CO1	PO1	06
	b)	If $\vec{A} = x z^3 \vec{i} - 2 x^2 y z \vec{j} + 2 y z^4 \vec{k}$ find $\nabla \cdot \vec{A}$, $\nabla \times \vec{A}$ and $\nabla \cdot (\nabla \times \vec{A})$.	CO1	PO1	07
	c)	Represent $\vec{F} = y \vec{i} - z \vec{j} + x \vec{k}$ in spherical polar coordinates.	CO1	PO1	07
UNIT - III					
4	a)	Show that $(1,1,1)$, $(1, -1, 1)$, $(0, 1, 1)$ are the basis of $V_3(R)$.	CO1	PO1	06
	b)	Let \mathbb{R}^+ be the set of all positive real numbers. Define vector addition as $u + v = uv \ \forall u, v \in \mathbb{R}^+$ and scalar multiplication $k \cdot u = u^k \ \forall k \in \mathbb{R}$. Show that \mathbb{R}^+ is a vector space over the field of real numbers.	CO1	PO1	07
	c)	Let $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a linear transformation defined by $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$. Find the bases of the range space and null space of T . Hence verify the Rank-nullity theorem.	CO1	PO1	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR																	
5	a)	Express $p = 3t^2 + 7t - 4$ in $P_2(t)$ as a linear combination of the vectors $p_1 = t^2 + 2t + 3$, $p_2 = 2t^2 + 3t + 7$, $p_3 = 3t^2 + 5t + 6$.	<i>COI</i>	<i>POI</i>	06												
	b)	Find the basis and dimension of the row space, column space and null space of the matrix $\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & 1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}.$	<i>COI</i>	<i>POI</i>	07												
	c)	Find the matrix of the linear transformation T on $V_3(R)$ defined as $T(a, b, c) = (2b + c, a - 4b, 3a)$ with respect to the basis $\{(1,1,1), (1,1,0), (1,0,0)\}$.	<i>COI</i>	<i>POI</i>	07												
UNIT - IV																	
6	a)	Apply Newton-Raphson method to find the root of the equation $x \log_{10} x = 1.2$ in (2,3) correct to four decimal places.	<i>COI</i>	<i>POI</i>	06												
	b)	From the following table estimate the number of students who obtained marks between 40 and 45	<i>CO2</i>	<i>POI</i>	07												
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Marks</td><td>30-40</td><td>40-50</td><td>50-60</td><td>60-70</td><td>70-80</td></tr> <tr> <td>No. of students</td><td>31</td><td>42</td><td>51</td><td>35</td><td>31</td></tr> </table>	Marks	30-40	40-50	50-60	60-70	70-80	No. of students	31	42	51	35	31			
Marks	30-40	40-50	50-60	60-70	70-80												
No. of students	31	42	51	35	31												
	c)	Evaluate $\int_0^{\pi/2} (1 - 0.612 \sin^2 x) dx$ numerically using suitable integration rule taking 9 equal parts.	<i>COI</i>	<i>POI</i>	07												
UNIT - V																	
7	a)	Employ Taylor series method to find y at $x = 0.1$ correct to four decimal places of the linear equation $\frac{dy}{dx} = 3e^x + 2y$ whose solution passes through the origin.	<i>COI</i>	<i>POI</i>	06												
	b)	Apply Runge-Kutta method of 4 th order to find $y(0.2)$ given $(y^2 - x^2)dx = (y^2 + x^2)dy$, $y(0) = 1$ with $h = 0.2$.	<i>COI</i>	<i>POI</i>	07												
	c)	Apply Milne's predictor - corrector method to compute $y(1.4)$ correct to four decimal places if $\frac{dy}{dx} = x^2 + \frac{y}{2}$, given $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.2) = 2.2469$ and $y(1.3) = 2.7514$.	<i>COI</i>	<i>POI</i>	07												
