

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September 2024 Supplementary Examinations

Programme: B.E.

Branch: CS Stream and Biotechnology

Course Code: 23MA2BSMCS / 22MA2BSMCS

Course: Mathematical Foundation for Computer Science Stream-2

Semester: II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Evaluate $\iint_{0,0}^{1,1} \frac{dx dy}{\sqrt{(1-x^2)(1-y^2)}}.$	1	1	6
	b)	Evaluate $\iint_{0,y}^{a,a} \frac{x}{x^2 + y^2} dx dy$ by changing the order of integration.	1	1	7
	c)	Derive the relation between the Beta and the Gamma functions.	1	1	7
OR					
2	a)	Express $\int_0^{\pi/2} (\sqrt{\tan \theta} + \sqrt{\sec \theta}) d\theta$ in terms of the Gamma function.	1	1	6
	b)	Find the volume of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the co-ordinate planes by using triple integration.	2	1	7
	c)	Evaluate $\iint xy dy dx$ taken over the region in the first quadrant bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$.	1	1	7
UNIT - 2					
3	a)	If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = \vec{r} $, then prove that $\operatorname{div}(\operatorname{grad} r^n) = n(n+1)r^{n-2}$.	1	1	6
	b)	If $\vec{F} = (x+y+az)\hat{i} + (bx+2y-z)\hat{j} + (x+cy+2z)\hat{k}$, find a, b, c so that $\operatorname{curl} \vec{F} = 0$ and then find ϕ such that $\vec{F} = \nabla \phi$.	1	1	7
	c)	Derive the expression for the base vectors of the cylindrical polar coordinate system and hence prove that they form an orthogonal curvilinear coordinate system.	1	1	7
UNIT - 3					
4	a)	Determine whether or not the vectors $u = (1, 1, 2)$, $v = (2, 3, 1)$ and $w = (4, 5, 5)$ in R^3 are linearly dependent.	1	1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Express M as a linear combination of the matrices A, B, C , where $M = \begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$.	1	1	7												
	c)	Find the basis for the row space, the column space and the null space of the matrix $A = \begin{bmatrix} 1 & 1 & 5 & 1 \\ 2 & 4 & 14 & 4 \\ 2 & 3 & 12 & 3 \end{bmatrix}$.	1	1	7												
OR																	
5	a)	Verify whether the vector $v = (2, -5, 3)$ is in the subspace spanned by $W = \{(1, -3, 2), (2, -4, -1), (1, -5, 7)\}$.	1	1	6												
	b)	Let $G: R^3 \rightarrow R^3$ be the linear mapping defined by $G(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$. Find the basis and the dimension of the (i) image of G (ii) kernel of G .	1	1	7												
	c)	Find the condition on a, b, c so that $v = (a, b, c)$ in R^3 belongs to $W = \text{span}(u_1, u_2, u_3)$, where $u_1 = (1, 2, 0)$, $u_2 = (-1, 1, 2)$ and $u_3 = (3, 0, -4)$.	1	1	7												
UNIT - 4																	
6	a)	Apply Newton-Raphson method to find the approximate root of the equation $x \log_{10} x = 1.2$ correct to 4 decimal places.	1	1	6												
	b)	Find the number of students who obtained less than 45 marks from the following table. Also, estimate the number of students scoring marks more than 40 but less than 45.	2	1	7												
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Marks</td> <td>30 – 40</td> <td>40 – 50</td> <td>50 – 60</td> <td>60 – 70</td> <td>70 – 80</td> </tr> <tr> <td>No. of Students</td> <td>31</td> <td>42</td> <td>51</td> <td>35</td> <td>31</td> </tr> </table>	Marks	30 – 40	40 – 50	50 – 60	60 – 70	70 – 80	No. of Students	31	42	51	35	31			
Marks	30 – 40	40 – 50	50 – 60	60 – 70	70 – 80												
No. of Students	31	42	51	35	31												
	c)	Find the approximate value of $\int_0^{\pi/2} \sqrt{\cos \theta} d\theta$ by Simpson's 1/3 rd rule taking 9 ordinates.	1	1	7												
UNIT - 5																	
7	a)	Apply fourth order Runge-Kutta method to compute $y(0.1)$ for the equation $\frac{dy}{dx} = 3e^x + 2y$ with $y(0) = 0$ taking $h = 0.1$.	1	1	6												
	b)	Apply modified Euler's method to find the value of y at $x = 0.1$ for the differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$ with $y(0) = 1$ taking $h = 0.1$. Carry out three modifications.	1	1	7												
	c)	Apply Milne's predictor-corrector method to find the solution of the equation $\frac{dy}{dx} = \frac{2y}{x}$, $x \neq 0$ at the point $x = 2$ for the data <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td> <td>1.00</td> <td>1.25</td> <td>1.5</td> <td>1.75</td> </tr> <tr> <td>y</td> <td>2.00</td> <td>3.13</td> <td>4.5</td> <td>6.13</td> </tr> </table> Use the corrector formula once.	x	1.00	1.25	1.5	1.75	y	2.00	3.13	4.5	6.13	1	1	7		
x	1.00	1.25	1.5	1.75													
y	2.00	3.13	4.5	6.13													