

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 22MA2BSMCV

Course: Mathematical Foundation for Civil Engineering-2

Semester: II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I				CO	PO	Marks
1	a)	Evaluate $\iint_R xy \, dy \, dx$ by changing the order of integration, where R is the region bounded by x -axis, ordinate $x = 2a$ and the parabola $x^2 = 4ay$.		CO1	PO1	6
	b)	Find the mass of a plate in the form of one loop of the Lemniscate $r^2 = a^2 \cos 2\theta$ if the density at a point varies as the square of its distance from the pole.		CO2	PO1	7
	c)	Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ using the definition $\Gamma(n) = 2 \int_0^{\infty} e^{-x^2} x^{2n-1} \, dx$.		CO1	PO1	7
OR						
2	a)	Evaluate $\iint_{0 \leq y \leq \sqrt{x^2 + y^2} \leq a} \frac{x^2}{\sqrt{x^2 + y^2}} \, dx \, dy$ by changing into polar coordinates.		CO1	PO1	6
	b)	Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.		CO2	PO1	7
	c)	Prove that $\int_0^{\infty} x^2 e^{-x^4} \, dx \times \int_0^{\infty} e^{-x^4} \, dx = \frac{\pi}{8\sqrt{2}}$.		CO1	PO1	7
UNIT - II						
3	a)	Find the constants a and b so that the surfaces $\phi = ax^2 y + z^3$ and $5x^2 - byz = 9x$ intersect orthogonally at the point $(1, -1, 2)$.		CO1	PO1	6
	b)	A fluid motion is given by $\vec{F} = (6xy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (3xz^2 - y)\hat{k}$. Show that the motion is irrotational and find its scalar potential.		CO1	PO1	7
	c)	Apply Green's theorem to find the work done $\oint_C (3x - 8y^2) \, dx + (4y - 6xy) \, dy$, where C is the boundary of the region enclosed by the lines $x = 0, y = 0$ and $x + y = 1$.		CO1	PO1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III																																			
4	a)	Form the partial differential equation by eliminating arbitrary constants from the relation $z = xy + y\sqrt{x^2 - a^2} + b$.	CO1	PO1	6																														
	b)	Apply direct integration method to solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ subjected to the conditions $\frac{\partial z}{\partial y} = -2 \sin y$ when $x = 0$ and $z = 0$ when y is an odd multiple of $\frac{\pi}{2}$.	CO1	PO1	7																														
	c)	Derive the one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$, where $u(x, t)$ denotes the temperature at a point x at time t .	CO1	PO1	7																														
OR																																			
5	a)	Form the partial differential equation by eliminating arbitrary function from $lx + my + nz = \phi(x^2 + y^2 + z^2)$.	CO1	PO1	6																														
	b)	Solve $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 2(x + y)u$ by the method of separation of variables.	CO1	PO1	7																														
	c)	Solve: $x^2(y - z)p + y^2(z - x)q = z^2(x - y)$.	CO1	PO1	7																														
UNIT - IV																																			
6	a)	Apply Newton-Raphson method to find the root of the equation $x \log_{10} x = 1.2$ in (2,3) correct to four decimal places.	CO1	PO1	6																														
	b)	The following table gives the viscosity of an oil as a function of temperature. Find the viscosity of oil at a temperature of 140^0C using appropriate interpolation formula.	CO2	PO1	7																														
	c)	<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Temp</td><td>110</td><td>130</td><td>160</td><td>190</td></tr> <tr> <td>Viscosity</td><td>10.8</td><td>8.1</td><td>5.5</td><td>4.8</td></tr> </table> <p>A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given in the table below. Using Simpson's 1/3rd rule, find the velocity of the rocket at $t = 80\text{sec}$.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>t (sec)</td><td>0</td><td>10</td><td>20</td><td>30</td><td>40</td><td>50</td><td>60</td><td>70</td><td>80</td></tr> <tr> <td>f (cm/sec²)</td><td>30</td><td>31.63</td><td>33.34</td><td>35.47</td><td>37.75</td><td>40.33</td><td>43.25</td><td>46.69</td><td>50.67</td></tr> </table>	Temp	110	130	160	190	Viscosity	10.8	8.1	5.5	4.8	t (sec)	0	10	20	30	40	50	60	70	80	f (cm/sec ²)	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67	CO2	PO1	7
Temp	110	130	160	190																															
Viscosity	10.8	8.1	5.5	4.8																															
t (sec)	0	10	20	30	40	50	60	70	80																										
f (cm/sec ²)	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67																										
UNIT - V																																			
7	a)	Solve the initial value problem $y' = 2y + 3e^x$, $y(0) = 0$ at $x = 0.1$ and $x = 0.2$ using Taylor series method by considering terms up to fourth degree.	CO1	PO1	6																														
	b)	Apply modified Euler's formula to solve $y' = xy + y^2$, $y(0) = 1$ at $x = 0.2$ by taking $h = 0.2$.	CO1	PO1	7																														
	c)	Apply Runge-Kutta method of fourth-order to solve the differential equation $\frac{dy}{dx} = \frac{2xy + e^x}{x^2 + xe^x}$, with $y(1) = 0$ at $x = 1.1$ by taking $h = 0.1$.	CO1	PO1	7																														