

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Semester: II

Branch: Civil Engineering

Duration: 3 hrs.

Course Code: 22MA2BSMCV

Max Marks: 100

Course: Mathematical Foundation for Civil Engineering-2

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Apply double integration to find the area between the polar curves cardioid $r = 4(1 - \cos \theta)$ and circle $r = 4$.	<i>CO1</i>	<i>PO1</i>	6
	b)	Evaluate $\iiint_R \frac{dx dy dz}{(1+x+y+z)^3}$ over the region R bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.	<i>CO1</i>	<i>PO1</i>	7
	c)	Let D be the triangular region bounded by the lines $y=0, y=2x$ and $x+2y=1$. Find the mass of the lamina with density given by $\rho(x, y) = x$.	<i>CO2</i>	<i>PO1</i>	7
OR					
2	a)	Show that $\int_0^{\pi/2} \sqrt{\sin \theta} d\theta \times \int_0^{\pi/2} \frac{1}{\sqrt{\sin \theta}} d\theta = \pi$.	<i>CO1</i>	<i>PO1</i>	6
	b)	Evaluate $\int_0^1 \int_{x^2}^{2-x} x y dy dx$ by changing the order of integration.	<i>CO1</i>	<i>PO1</i>	7
	c)	Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.	<i>CO2</i>	<i>PO1</i>	7
UNIT - II					
3	a)	Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at the point $(2, -1, 1)$ in the direction normal to the surface $x \log z - y^2 = -4$ at $(-1, 2, 1)$.	<i>CO1</i>	<i>PO1</i>	6
	b)	If $f = (x^2 + y^2 + z^2)^{-n}$ find $\operatorname{div}(\operatorname{grad} f)$ and determine n if $\operatorname{div}(\operatorname{grad} f) = 0$.	<i>CO1</i>	<i>PO1</i>	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Apply Green's theorem to evaluate $\oint_c (xy + y^2)dx + x^2 dy$ where 'c' is the closed curve of the region bounded by $y=x$ and $y=x^2$.	CO1	PO1	7										
		UNIT - III													
4	a)	Form the partial differential equation by eliminating the arbitrary function from $F(x^2 + y^2 + z^2, z^2 - 2xy) = 0$.	CO1	PO1	6										
	b)	Solve the partial differential equation $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$.	CO1	PO1	7										
	c)	Derive the one-dimensional heat equation $u_t = c^2 u_{xx}$.	CO1	PO1	7										
		OR													
5	a)	Obtain the partial differential equation of family of spheres having center in xy -plane with constant radius.	CO1	PO1	6										
	b)	Solve $\frac{\partial^2 z}{\partial x \partial y} = \frac{x^2}{y}$ by using direct integration subject to conditions $z(x, 1) = x^2$ and $z(1, y) = y^2$.	CO1	PO1	7										
	c)	Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ by the method of separation of variables subject to the condition $u(x, 0) = 6e^{-3x}$.	CO1	PO1	7										
		UNIT - IV													
6	a)	Apply Newton-Raphson method to find an approximate root of the equation $x \log_{10}(x) + 1.5x^2 = 1.2$ in (1,2) correct to 4 decimal places.	CO1	PO1	6										
	b)	If the number of persons earning below 100 dollars is 600, estimate the number of persons having income between 200 and 250 from the following data:	CO1	PO1	7										
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Income</td> <td>100-200</td> <td>200-300</td> <td>300-400</td> <td>400-500</td> </tr> <tr> <td>No. of persons</td> <td>425</td> <td>360</td> <td>150</td> <td>65</td> </tr> </table>	Income	100-200	200-300	300-400	400-500	No. of persons	425	360	150	65			
Income	100-200	200-300	300-400	400-500											
No. of persons	425	360	150	65											
	c)	A plane area is bounded by a curve, the x – axis and two extreme ordinates. The area is divided into six figures by equidistant ordinates 2 inches apart, the heights of the ordinates being 21.65, 21.04, 20.35, 19.61, 18.75, 17.80 and 16.75 respectively. Find the approximate value of the area by using Simpson's 3/8 th rule.	CO2	PO1	7										
		UNIT-V													
7	a)	Apply Taylor series method to find the solution of initial value problem $\frac{dy}{dx} = \log(x + y)$, $y(1) = 2$ up to third degree term and hence compute $y(1.5)$ and $y(2.0)$.	CO1	PO1	6										
	b)	Apply fourth order Runge-Kutta method to find an approximate solution of an initial value problem $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$ at $x = 0.2$ taking $h = 0.2$ as the step length.	CO1	PO1	7										

		c) Find an approximate solution of the initial value problem at $x = 1.4$, given $x^2 \frac{dy}{dx} + xy = 1$, $y(1) = 1$, $y(1.1) = 0.996$, $y(1.2) = 0.986$, and $y(1.3) = 0.972$ using Milne's predictor-corrector method.	COI	POI	7
--	--	--	-----	-----	---

SUPPLEMENTARY EXAMS 2023