

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2024 Semester End Main Examinations

Programme: B.E.

Branch: EEE/ETE/ECE/MD/EIE

Course Code: 22MA2BSMES

Course: Mathematical Foundation for Electrical Stream-2

Semester: II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Evaluate $\int_{-a}^a \int_0^{\sqrt{a^2 - x^2}} \sqrt{x^2 + y^2} dx dy$ by changing into polar coordinates.	CO1	PO1	6
	b)	Find the volume of the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.	CO2	PO1	7
	c)	Evaluate $\int_0^{\infty} \frac{dx}{1+x^4}$ by using beta and gamma functions.	CO1	PO1	7
OR					
2	a)	Evaluate $\int_0^{1-x} \int_{x^2}^{1-x} x y dy dx$ by changing the order of integration.	CO1	PO1	6
	b)	Find the area of the Lemniscate $r^2 = a^2 \cos 2\theta$.	CO2	PO1	7
	c)	Prove that $\beta(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.	CO1	PO1	7
UNIT - II					
3	a)	Find the directional derivative of $\phi = x^2 y z + 4 x z^2$ at $(1, -2, -1)$ along $2\hat{i} - \hat{j} - 2\hat{k}$.	CO1	PO1	6
	b)	Show that $\vec{F} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$ is irrotational. Also, find a scalar function ϕ such that $\vec{F} = \nabla \phi$.	CO1	PO1	7
	c)	Verify Green's theorem for $\oint_C (x y - x^2) dx + x^2 y dy$ where C is the closed curve formed by $y=0, x=1$ and $y=x$.	CO2	PO1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III																	
4	a)	Let \mathbb{R}^+ be the set of all positive real numbers. Define vector addition as $u+v=uv \forall u,v \in \mathbb{R}^+$ and scalar multiplication $k.u=u^k \forall k \in \mathbb{R}$. Show that \mathbb{R}^+ is a vector space over the field of real numbers.	CO1	PO1	6												
	b)	Show that the vectors $u_1 = (1, 1, 1)$, $u_2 = (1, 2, 3)$, $u_3 = (1, 5, 8)$ spans \mathbb{R}^3 .	CO1	PO1	7												
	c)	Find the matrix of linear transformation $T: V_2(\mathbb{R}) \rightarrow V_3(\mathbb{R})$ defined by $T(x, y) = (-x + 2y, y, -3x + 3y)$ relative to the basis $B_1 = \{(1, 1), (-1, 1)\}$ and $B_2 = \{(1, 1, 1), (1, -1, 1), (0, 0, 1)\}$.	CO1	PO1	7												
	OR																
5	a)	Show that the subset $W = \{(x_1, x_2, x_3) / x_1 + x_2 + x_3 = 0\}$ is a subspace of $V_3(\mathbb{R})$.	CO1	PO1	6												
	b)	Express the polynomial $v = t^2 + 4t - 3$ in $p(t)$ as a linear combination of the polynomials $p_1 = t^2 - 2t + 5$, $p_2 = 2t^2 - 3t$, $p_3 = t + 3$.	CO1	PO1	7												
	c)	Find the range space, null space and verify rank nullity theorem of the matrix $A = \begin{bmatrix} 5 & 2 & 1 \\ -1 & 3 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$.	CO1	PO1	7												
	UNIT - IV																
6	a)	Find the root of the equation $x \log_{10} x = 1.2 \ln(2, 3)$ correct to 4 decimal places by Newton-Raphson method.	CO1	PO1	6												
	b)	A survey conducted in a slum locality reveals the following information as classified below.	CO2	PO1	7												
		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 25%;">Income per day (Rs)</td><td style="width: 15%;">under10</td><td style="width: 15%;">10-20</td><td style="width: 15%;">20-30</td><td style="width: 15%;">30-40</td><td style="width: 15%;">40-50</td></tr> <tr> <td>Number of persons</td><td>20</td><td>45</td><td>115</td><td>210</td><td>115</td></tr> </table> <p>Estimate the probable number of persons in the income group 10 to 15.</p>	Income per day (Rs)	under10	10-20	20-30	30-40	40-50	Number of persons	20	45	115	210	115			
Income per day (Rs)	under10	10-20	20-30	30-40	40-50												
Number of persons	20	45	115	210	115												
	c)	Apply Lagrange's formula inversely to find a root of the equation $f(x) = 0$ given that $f(30) = -30$, $f(34) = -13$, $f(38) = 3$, $f(42) = 18$.	CO1	PO1	7												

UNIT - V					
7	a)	Apply Taylor series to find an approximate value of y when $x = 0.1$ if $\frac{dy}{dx} = x - y^2$ and $y = 1$ at $x = 0$.	CO1	PO1	6
	b)	Apply Modified Euler's method to find y at $x = 0.2$, given $\frac{dy}{dx} = 3x + \frac{y}{2}$ with $y(0) = 1$ taking $h = 0.2$ by performing three iterations.	CO1	PO1	7
	c)	Apply Runge-Kutta method to solve $(x + y) \frac{dy}{dx} = 1$ $y(0.4) = 1$ at $x = 0.5$ correct to four decimal places with $h = 0.1$.	CO1	PO1	7

B.M.S.C.E. - ODD SEM 2023-24