

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Semester: II

Branch: EEE, ETE, ECE, MD, EIE

Duration: 3 hrs.

Course Code: 23MA2BSMES / 22MA2BSMES

Max Marks: 100

Course: Mathematical Foundation for Electrical Stream - 2

Instructions:

1. All units have internal choice, answer one complete question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Evaluate $\iint_R xy \, dx \, dy$, where R is the region bounded by x - axis, ordinate $x = 2a$ and the curve $x^2 = 4ay$.	1	1	6
	b)	Find the area lying inside the cardioid $r = a(1 + \cos \theta)$ and outside the circle $r = a$.	1	1	7
	c)	Prove that $\int_0^\infty xe^{-x^8} dx \times \int_0^\infty x^2 e^{-x^4} dx = \frac{\pi}{16\sqrt{2}}$.	1	1	7
OR					
2	a)	Derive the relation between beta and gamma function in the form $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.	1	1	6
	b)	Evaluate the integral $\int_0^1 \int_0^{\sqrt{1-y^2}} e^{x^2+y^2} dx dy$ by transforming into polar coordinates.	1	1	7
	c)	Calculate the volume of the solid bounded by the planes $x = 0$, $y = 0$, $z = 0$ and $x + y + z = a$.	1	1	7
UNIT - 2					
3	a)	Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at the point $(2, -1, 1)$ in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.	1	1	6
	b)	Apply Green's theorem to evaluate $\int_C (3x - 8y^2) dx + (4y - 6xy) dy$ where C is bounded by $x = 0$, $y = 0$ and $x + y = 1$.	1	1	7
	c)	If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = \vec{r} $, show that $r^n \vec{r}$ is solenoidal for $n = -3$.	1	1	7
OR					
4	a)	If $\vec{r} = \hat{x} + y\hat{j} + zk$ and $r = \vec{r} $, then prove that $\operatorname{div}(\operatorname{grad}(r^n)) = n(n+1)r^{n-2}$.	1	1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	A vector field is given by $\vec{F} = (x^2 - y^2 + x)\hat{i} - (2yx + y)\hat{j}$. Show that the field is irrotational and find its scalar potential.	1	1	7											
	c)	Apply Stokes' theorem to evaluate $\oint_C (2x - y)dx - yz^2dy - y^2zdz$ where C is the projection over the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ in the xy - plane.	1	1	7											
	UNIT - 3															
5	a)	Obtain the matrix of linear transformation $T: R^2 \rightarrow R^3$ defined by $T(a,b) = (a+b, a-b, 2b)$ with respect to the basis $B = \{(1,0), (1,1)\}$ for R^2 and C a standard basis for R^3 .	1	1	6											
	b)	Let $T: V \rightarrow W$ be a linear transformation defined by $T(x, y, z) = (x + y, x - y, 2x + z)$. Verify the rank-nullity theorem.	1	1	7											
	c)	Find the basis and dimension of row space, column space and null space of the matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \\ 3 & 0 & 1 \end{bmatrix}$.	1	1	7											
	OR															
6	a)	Find the linear transformation $T: R^2 \rightarrow R^2$ such that $T(1,2) = (3,0)$ and $T(2,1) = (1,2)$.	1	1	6											
	b)	Find the basis and dimension of the subspace spanned by the vectors $\{(1, -2, 3), (1, -3, 4), (-1, 1, -2)\}$ in the vector space $V_3(R)$.	1	1	7											
	c)	Verify whether $V = (1, -2, 5)$ in R^3 is a linear combination of the vectors $u_1 = (1, 1, 1), u_2 = (1, 2, 3), u_3 = (2, -1, 1)$.	1	1	7											
	UNIT - 4															
7	a)	Approximate the root of the equation $3x = \cos x + 1$ near $x = 0.5$ by Newton-Raphson method. Perform three iterations.	1	1	6											
	b)	Apply Lagrange's interpolation formula inversely to obtain a root of the equation $f(x) = 0$ given that $f(30) = -30, f(34) = -13$ and $f(38) = 3$.	1	1	7											
	c)	A solid of revolution is formed by rotating about the x -axis, the lines $x = 0, x = 1$ and curve through the points with the following coordinates: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>0</td><td>0.25</td><td>0.5</td><td>0.75</td><td>1</td></tr> <tr> <td>y</td><td>1</td><td>0.9896</td><td>0.9589</td><td>0.9089</td><td>0.8415</td></tr> </table> Apply the Simpson's rule to find the volume of the solid formed.	x	0	0.25	0.5	0.75	1	y	1	0.9896	0.9589	0.9089	0.8415	1	1
x	0	0.25	0.5	0.75	1											
y	1	0.9896	0.9589	0.9089	0.8415											
	OR															
8	a)	Find an approximate root of the equation $x \log_{10}(x) = 1.2$ near $x = 1.5$ using Newton-Raphson method. Perform three iterations.	1	1	6											

	b)	<p>Distance y in nautical miles of the visible horizon for given heights x in metres above the surface of the earth are given by the following table:</p> <table border="1"> <tr> <td>x</td><td>100</td><td>150</td><td>200</td><td>250</td><td>300</td><td>350</td><td>400</td></tr> <tr> <td>y</td><td>12</td><td>16</td><td>21</td><td>27</td><td>36</td><td>50</td><td>72</td></tr> </table> <p>Find the value of y when $x = 225$ metres by applying Newton's forward interpolation formula.</p>	x	100	150	200	250	300	350	400	y	12	16	21	27	36	50	72	1	1	7
x	100	150	200	250	300	350	400														
y	12	16	21	27	36	50	72														
	c)	<p>Given that</p> <table border="1"> <tr> <td>x</td><td>4</td><td>4.2</td><td>4.4</td><td>4.6</td><td>4.8</td><td>5</td><td>5.2</td></tr> <tr> <td>$y = \log_e x$</td><td>1.3863</td><td>1.4351</td><td>1.4816</td><td>1.5261</td><td>1.5686</td><td>1.6094</td><td>1.6487</td></tr> </table> <p>Evaluate $I = \int_4^{5.2} \log x dx$ by using Weddle's rule.</p>	x	4	4.2	4.4	4.6	4.8	5	5.2	$y = \log_e x$	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487	1	1	7
x	4	4.2	4.4	4.6	4.8	5	5.2														
$y = \log_e x$	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487														
		UNIT - 5																			
9	a)	<p>Solve by Taylor's series method the equation $\frac{dy}{dx} = \log_e(xy)$, $y(1) = 2$ for $y(1.1)$ by considering up to third degree terms.</p>	1	1	6																
	b)	<p>Intensity of radiation is directly proportional to the amount of remaining radioactive substance. The differential equation is $\frac{dy}{dt} = -ky$, where $k = 0.01$, $t_0 = 0$, $y_0 = 100g$. Determine how much substance will remain at the moment $t = 25$ sec by Modified Euler's method with $h = 25$. Perform two iterations.</p>	1	1	7																
	c)	<p>Solve the differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$ at $x = 0.2$ taking $h = 0.2$ by Runge Kutta method of fourth order.</p>	1	1	7																
		OR																			
10	a)	<p>Employ Taylor's series method to obtain approximate value of y at $x = 0.2$ for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$ by considering up to third degree terms.</p>	1	1	6																
	b)	<p>Apply modified Euler's method to compute $y(0.1)$, given $\frac{dy}{dx} = x^2 + y$ with the initial condition $y(0) = 1$ by taking $h = 0.1$. Perform two iterations.</p>	1	1	7																
	c)	<p>Apply Milne's Predictor-corrector method to find $y(2)$ given $\frac{dy}{dx} = \frac{2y}{x}$, $x \neq 0$, $y(1) = 2$, $y(1.25) = 3.13$, $y(1.5) = 4.5$ and $y(1.75) = 6.13$.</p>	1	1	7																
