

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September 2024 Supplementary Examinations

Programme: B.E.

Semester: II

Branch: EEE/ECE/MD/EIE/ETE

Duration: 3 hrs.

Course Code: 23MA2BSMES / 22MA2BSMES

Max Marks: 100

Course: Mathematical foundation for Electrical stream – 2

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Evaluate $\int_0^a \int_{x/a}^{2a-x} xy dy dx$ by changing the order of integration.	1	1	6
	b)	Evaluate $\int_{-c}^c \int_{-b}^b \int_{-a}^a (x^2 + y^2 + z^2) dz dy dx$.	1	1	7
	c)	Prove that $\int_0^\infty xe^{-x^8} dx \times \int_0^\infty x^2 e^{-x^4} dx = \frac{\pi}{16\sqrt{2}}$.	1	1	7
OR					
2	a)	Evaluate $\int_0^1 \frac{dx}{\sqrt{1-x^4}}$ in terms of the Gamma function.	1	1	6
	b)	Evaluate $\int_0^1 \int_0^{\sqrt{1-y^2}} e^{x^2+y^2} dx dy$ by transforming into polar coordinates.	1	1	7
	c)	Find the volume of the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $\frac{x}{2} + \frac{y}{3} + \frac{z}{6} = 1$ using triple integrals.	2	1	7
UNIT - 2					
3	a)	Apply Green's theorem to evaluate $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$, where C is the curve made up of the parabolas $y^2 = x$ and $x^2 = y$.	2	1	6
	b)	If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = \vec{r} $, prove that $\text{grad} \left(\text{div} \left(\frac{\vec{r}}{r} \right) \right) = -\frac{2\vec{r}}{r^3}$.	1	1	7
	c)	Show that the vector $\vec{F} = (2x + yz)\hat{i} + (4y + zx)\hat{j} + (xy - 6z)\hat{k}$ is irrotational and hence find its scalar potential.	2	1	7
UNIT - 3					
4	a)	Find the matrix of linear transformation $T: R^3 \rightarrow R^2$ defined by $T(x, y, z) = (2x, 4y + 5z)$ with respect to the bases $B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ for R^3 and $C = \{(1, 1), (0, 1)\}$ for R^2 .	1	1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Find the subset of $S = \{u_1, u_2, u_3, u_4\}$ of \mathbb{R}^5 that forms a basis for $W = \text{span}(u_i)$ where $u_1 = (1, 1, 1, 2, 3)$, $u_2 = (1, 2, -1, -2, 1)$, $u_3 = (3, 5, -1, -2, 5)$ and $u_4 = (1, 2, 1, -1, 4)$.	1	1	7										
	c)	Determine whether the vectors $v_1 = (1, 2, -3, 1)$, $v_2 = (3, 7, 1, -2)$ and $v_3 = (1, 3, 7, -4)$ are linearly independent or not.	1	1	7										
OR															
5	a)	Express the polynomial $v = t^2 + 4t - 3$ in $P(t)$ as a linear combination of the polynomials $p_1 = t^2 - 2t + 5$, $p_2 = 2t^2 - 3t$ and $p_3 = t + 1$.	1	1	6										
	b)	Find the linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that $T(1, 2) = (3, 0)$ and $T(2, 1) = (1, 2)$.	1	1	7										
	c)	Find the basis and dimension of the row space, the column space and the null space of the matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \\ 3 & 0 & 1 \end{bmatrix}$.	1	1	7										
UNIT - 4															
6	a)	Find the root of the equation $2x - 5 = 3\sin x$ that lies in the interval $(2.7, 3)$ correct to four decimal places by Newton-Raphson method.	1	1	6										
	b)	A rocket is launched from the ground. Given below are distances(s) at different time (t). Apply Lagrange's interpolation formula to find the distance at $t = 2.5$ secs.	2	1	7										
		<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>t (in seconds)</td> <td>0</td> <td>1</td> <td>2</td> <td>3</td> </tr> <tr> <td>s (in kms)</td> <td>0</td> <td>20</td> <td>60</td> <td>120</td> </tr> </table>	t (in seconds)	0	1	2	3	s (in kms)	0	20	60	120			
t (in seconds)	0	1	2	3											
s (in kms)	0	20	60	120											
	c)	Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by considering seven equidistant ordinates and hence find an approximate value of π .	1	1	7										
UNIT - 5															
7	a)	Apply Runge-Kutta method of fourth order to solve the differential equation $\frac{dy}{dx} = x^2 - y$, $y(0) = 1$ at $x = 0.1$ taking $h = 0.1$.	1	1	6										
	b)	The intensity of radiation is directly proportional to the amount of remaining radioactive substance. The differential equation is $\frac{dy}{dt} = -ky$, where $k = 0.01$, $t_0 = 0$, $y_0 = 100g$. Determine how much substance will remain at the moment $t = 50$ sec by Modified Euler's method with $h = 50$.	2	1	7										
	c)	Compute $y(2)$ using Milne's predictor-corrector method, given $\frac{dy}{dx} = \frac{1}{2}(x+y)$, $y(0) = 2$, $y(0.5) = 2.636$, $y(1) = 3.595$ and $y(1.5) = 4.968$. Use corrector formula once.	1	1	7										