

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Semester: II

Branch: ME, IEM, AS, CH

Duration: 3 hrs.

Course Code: 22MA2BSMME

Max Marks: 100

Course: Mathematical Foundation for Mechanical Engineering

Date: 27.09.2023

Stream-2

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Evaluate $\iint_R xy \, dx \, dy$, if R is the domain bounded by $x-axis$, ordinate $x = 2a$ and the curve $x^2 = 4ay$.	CO1	PO1	6
	b)	Evaluate $\int_0^1 \int_{\sqrt{x}}^1 \frac{y^2 \, dy \, dx}{\sqrt{y^4 - x^2}}$ by changing the order of integration.	CO1	PO1	7
	c)	Show that $\int_0^{\infty} xe^{-x^8} \, dx \times \int_0^{\infty} x^2 e^{-x^4} \, dx = \frac{\pi\sqrt{2}}{32}$.	CO1	PO1	7
OR					
2	a)	Evaluate $\int_{-3}^3 \int_0^{\sqrt{9-x^2}} \sqrt{x^2 + y^2} \, dy \, dx$ by changing into polar coordinates.	CO1	PO1	6
	b)	Compute the volume of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the co-ordinate planes using triple integrals.	CO2	PO1	7
	c)	Derive the relationship between the Beta and Gamma function.	CO1	PO1	7
UNIT – II					
3	a)	Find the directional derivative of $x^2 y^2 z^2$ at the point $(1,1,-1)$ in the direction of the tangent to the curve $x = e^t$, $y = 1 + 2 \sin t$ and $z = t - \cos t$, where $-1 \leq t \leq 1$.	CO1	PO1	6
	b)	$\vec{F} = (6xy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (3xz^2 - y)\hat{k}$ is velocity vector field. Show that \vec{F} is an irrotational and hence find its scalar potential $\phi(x, y, z)$, given $\phi(1, -1, 1) = 1$.	CO2	PO1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Apply Green's theorem to compute the work done $W = \oint_C (y - \sin x) dx + \cos x dy$, where C is the triangle enclosed by the lines $y = 0$, $x = \pi/2$ and $y = 2x/\pi$.	CO2	PO1	7																						
		UNIT – III																									
4	a)	Solve $x \frac{\partial^2 z}{\partial x^2} + \frac{\partial z}{\partial x} = 9x^2 y^3$ by direct integration method.	CO1	PO1	6																						
	b)	Solve $x^2 (y^3 - z^3) p + y^2 (z^3 - x^3) q = z^2 (x^3 - y^3)$.	CO1	PO1	7																						
	c)	Derive the one-dimensional heat equation in the form $u_t = c^2 u_{xx}$.	CO1	PO1	7																						
		OR																									
5	a)	Form a partial differential equation by eliminating arbitrary functions from $z = \frac{1}{r} [f(r - at) + g(r + at)]$.	CO1	PO1	6																						
	b)	Solve $z(z^2 + xy)(px - qy) = x^4$.	CO1	PO1	7																						
	c)	Apply the method of separation of variables to solve $\frac{\partial z}{\partial x} = 2 \frac{\partial z}{\partial y} + z$ subjected to the condition $z(x, 0) = 6e^{-3x}$.	CO1	PO1	7																						
		UNIT – IV																									
6	a)	Apply Newton-Raphson method to find a root of the function $f(x) = x \tan(x) + 1$ near $x = \pi$ correct to 4 decimal places.	CO1	PO1	6																						
	b)	Apply suitable interpolation formula to compute the viscosity of the oil $140^\circ C$ from the given data:	CO2	PO1	7																						
		<table border="1"> <tr> <td>Temperature $^\circ C$</td> <td>110</td> <td>130</td> <td>160</td> <td>190</td> </tr> <tr> <td>Viscosity</td> <td>10.8</td> <td>8.1</td> <td>5.5</td> <td>4.8</td> </tr> </table>	Temperature $^\circ C$	110	130	160	190	Viscosity	10.8	8.1	5.5	4.8															
Temperature $^\circ C$	110	130	160	190																							
Viscosity	10.8	8.1	5.5	4.8																							
	c)	The velocity $v(km/min)$ of a moped which starts from rest, is given at fixed intervals of time $t(min)$ as follows:	CO2	PO1	7																						
		<table border="1"> <tr> <td>$t(min)$</td> <td>2</td> <td>4</td> <td>6</td> <td>8</td> <td>10</td> <td>12</td> <td>14</td> <td>16</td> <td>18</td> <td>20</td> </tr> <tr> <td>$v(km/min)$</td> <td>10</td> <td>18</td> <td>25</td> <td>29</td> <td>32</td> <td>20</td> <td>11</td> <td>5</td> <td>2</td> <td>0</td> </tr> </table> <p>Estimate the approximate distance covered in 20 minutes using suitable Simpson's rule.</p>	$t(min)$	2	4	6	8	10	12	14	16	18	20	$v(km/min)$	10	18	25	29	32	20	11	5	2	0			
$t(min)$	2	4	6	8	10	12	14	16	18	20																	
$v(km/min)$	10	18	25	29	32	20	11	5	2	0																	
		UNIT – V																									
7	a)	Compute the approximate value of y at $x = 0.1$ and $x = 0.2$ by determining the Taylor series solution of $y' = x^2 y - 1$ up to fourth degree term given $y(0) = 1$.	CO1	PO1	6																						
	b)	Find an approximate solution of $y' = x + \sin(y)$, $y(0) = 1$ at $x = 0.2$ by Runge-Kutta method of order 4 taking $h = 0.2$.	CO1	PO1	7																						
	c)	Find an approximate solution of $y' = xy + y^2$ at $x = 0.4$ using Milne's predictor corrector method given $y(0) = 1.0000$, $y(0.1) = 1.1169$, $y(0.2) = 1.2773$ and $y(0.3) = 1.5049$.	CO1	PO1	7																						