

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2024 Semester End Main Examinations

Programme: B.E.

Semester: II

Branch: ME, IEM, AS, CH

Duration: 3 hrs.

Course Code: 22MA2BSMME

Max Marks: 100

Course: Mathematical Foundation for Mechanical Engineering Stream-2

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Evaluate $\iint_R xy(x+y) dxdy$, where R is the region bounded by the parabola $y=x^2$ and the line $y=x$.	CO1	PO1	6
	b)	Find the mass of a lamina in the form of the cardioid $r=a(1+\cos\theta)$ whose density at any point varies as the square of its distance from the initial line.	CO2	PO1	7
	c)	Using $\Gamma(n) = 2 \int_0^{\infty} e^{-x^2} x^{2n-1} dx$, prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.	CO1	PO1	7
OR					
2	a)	Change the order of integration and hence evaluate $\int_0^e \int_{e^x}^e \frac{dy dx}{\log_e y}$.	CO1	PO1	6
	b)	Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$.	CO2	PO1	7
	c)	Prove that $\int_0^1 \frac{x^2 dx}{\sqrt{1-x^4}} \times \int_0^1 \frac{dx}{\sqrt{1-x^4}} = \frac{\pi}{4}$.	CO1	PO1	7
UNIT - II					
3	a)	Find the directional derivatives of $\phi(x, y, z) = x^2yz + 4xz^2$ at the point $P(1, 2, -1)$ in the direction of PQ where $Q(3, -3, -2)$.	CO1	PO1	6
	b)	A fluid motion is given by $\vec{V} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$. Show that the motion is irrotational and find its scalar potential.	CO1	PO1	7
	c)	Find the work done in moving a particle in the force field $\vec{F} = (2y+3)\hat{i} + (xy)\hat{j} + (yz-x)\hat{k}$ along the curve defined by $x = 2t^2$, $y = t$ and $z = t^3$ from the point $(0, 0, 0)$ to the point $(2, 1, 3)$.	CO2	PO1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III																					
4	a)	Form the partial differential equation by eliminating arbitrary constants from $z = a(x+y) + b(x-y) + abt + c$.	CO1	PO1	6																
	b)	Solve the partial differential equation $\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y} + a$ by direct integration method.	CO1	PO1	7																
	c)	Derive the one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$, where $u(x, t)$ denotes the temperature at a point x at time t .	CO1	PO1	7																
OR																					
5	a)	Form the partial differential equation by eliminating arbitrary function from $z = f(x+y)g(x-y)$.	CO1	PO1	6																
	b)	Solve: $x^2(y^3 - z^3)p + y^2(z^3 - x^3)q = z^2(x^3 - y^3)$.	CO1	PO1	7																
	c)	Solve the partial differential equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6e^{-3x}$ by the method of separation of variables.	CO1	PO1	7																
UNIT - IV																					
6	a)	Apply Newton-Raphson method to find the root of the equation $3\sin x - 2x + 5 = 0$ near $x = 3$ correct to four decimal places.	CO1	PO1	6																
	b)	Distance in nautical miles of the visible horizon for given heights in meters above the surface of the earth are given by the following table: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x(heights)</td><td>100</td><td>150</td><td>200</td><td>250</td><td>300</td><td>350</td><td>400</td></tr> <tr> <td>y(distance)</td><td>12</td><td>16</td><td>21</td><td>27</td><td>36</td><td>50</td><td>72</td></tr> </table> Find the value of y when $x = 225$ meters by using appropriate interpolation formula.	x (heights)	100	150	200	250	300	350	400	y (distance)	12	16	21	27	36	50	72	CO2	PO1	7
x (heights)	100	150	200	250	300	350	400														
y (distance)	12	16	21	27	36	50	72														
	c)	Apply Simpson's rule to evaluate $\int_0^{0.6} e^{-x^2} dx$ by taking 10 ordinates.	CO1	PO1	7																
UNIT - V																					
7	a)	Apply Taylor's series method to solve the initial value problem $\frac{dy}{dx} = x^2 + y$, $y(0) = 10$ at $x = 0.1$ by considering up to fourth degree.	CO1	PO1	6																
	b)	Apply Runge-Kutta method of fourth-order to solve $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$ at $x = 0.2$ by taking $h = 0.2$.	CO1	PO1	7																
	c)	If $y' = 2e^x - y$, $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.04$ and $y(0.3) = 2.09$, find $y(0.4)$ by applying Milne's predictor-corrector method.	CO1	PO1	7																