

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Branch: ME, IEM, AS, CH

Course Code: 22MA2BSMME

Course: Mathematical Foundation for Mechanical Engineering

Stream-2

Semester: II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			CO	PO	Marks
1	a)	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing in to polar co-ordinates.	CO1	PO1	6
	b)	Compute the volume of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the co-ordinate planes using triple integrals.	CO2	PO1	7
	c)	Using $\Gamma(n) = 2 \int_0^\infty e^{-x^2} x^{2n-1} dx$, prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.	CO1	PO1	7
OR					
2	a)	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{dy dx}{1+x^2+y^2}$.	CO1	PO1	6
	b)	Evaluate $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$ by changing the order of integration.	CO2	PO1	7
	c)	Show that $\int_0^\infty x e^{-x^8} dx \times \int_0^\infty x^2 e^{-x^4} dx = \frac{\pi \sqrt{2}}{32}$.	CO1	PO1	7
			UNIT - II		
3	a)	Find $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$ of $\vec{F} = \frac{x\hat{i}+y\hat{j}}{(x^2+y^2)}$.	CO1	PO1	6
	b)	Show that $\vec{F} = (\sin y + z)\hat{i} + (x \cos y - z)\hat{j} + (x - y)\hat{k}$ is irrotational and hence find its scalar potential.	CO1	PO1	7
	c)	Apply Green's theorem to evaluate $\int_C (y - \sin x) dx + \cos x dy$, where C is the triangle enclosed by the lines $y = 0$, $x = \frac{\pi}{2}$ and $y = \frac{2}{\pi}x$.	CO2	PO1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III																	
4	a)	Form a partial differential equation by eliminating the arbitrary function from $z = e^{ax+by}f(ax - by)$.	CO1	PO1	6												
	b)	Solve $\tan(x)p + \tan(y)q - 2\cot(z) = 0$.	CO1	PO1	7												
	c)	Apply the method of separation of variables to solve $\frac{\partial z}{\partial x} = 2\frac{\partial z}{\partial y} + z$ subjected to the condition $z(x,0) = 6e^{-3x}$.	CO1	PO1	7												
OR																	
5	a)	Form partial differential equation of all spheres whose center lies on the z -axis.	CO1	PO1	6												
	b)	Solve $x(y^2 - z^2)\frac{\partial z}{\partial x} + y(z^2 - x^2)\frac{\partial z}{\partial y} = z(x^2 - y^2)$.	CO1	PO1	7												
	c)	Derive the one-dimensional wave equation in the form $u_{tt} = c^2 u_{xx}$.	CO1	PO1	7												
UNIT - IV																	
6	a)	Apply Newton-Raphson method to find a positive real root of the equation $3x^2 - 1 - \sin x = 0$ correct to four decimal places with 0.5 as initial approximation.	CO1	PO1	6												
	b)	The following data are part of a table for $g(x) = \frac{\sin x}{x^2}$. <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>0.1</td><td>0.2</td><td>0.3</td><td>0.4</td><td>0.5</td></tr> <tr> <td>$g(x)$</td><td>9.9833</td><td>4.9667</td><td>3.2836</td><td>2.4339</td><td>1.9177</td></tr> </table> Determine $g(0.25)$ using suitable Newton-Gregory interpolation formula.	x	0.1	0.2	0.3	0.4	0.5	$g(x)$	9.9833	4.9667	3.2836	2.4339	1.9177	CO2	PO1	7
x	0.1	0.2	0.3	0.4	0.5												
$g(x)$	9.9833	4.9667	3.2836	2.4339	1.9177												
	c)	Evaluate $\int_0^1 \tan^{-1} x \, dx$ by dividing the interval into six equal subintervals using Simpson's 1/3 rd rule.	CO1	PO1	7												
UNIT - V																	
7	a)	The dissolved oxygen deficit ' y ' in a stream due to pollutants is given by Streeter-Phelps equation $10y' + 0.2y = 6e^{-0.05x}$, $y(0) = 3$, where ' x ' is measured along the length of river. Using Taylor's series method compute ' y ' for a stretch of $x = 0.2 \text{ km}$.	CO2	PO1	6												
	b)	Apply Runge-Kutta method of 4 th order to find an approximate solution of $y' = xy + y^2$, $y(0) = 1$ at $x = 0.1$, with $h = 0.1$.	CO1	PO1	7												
	c)	Apply the Milne's predictor-corrector method to determine y at $x = 0.8$ from $y' - x + y^2 = 0$ given $y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795$ and $y(0.6) = 0.1762$.	CO1	PO1	7												
