

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering / Bio-Technology

Course Code: 19MA3BSAPM

Course: Applied Mathematics

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - 1			CO	PO	Marks												
1	a)	Find the values of λ and μ such that the system of equations $x + 2y + 3z = 5$, $x + 3y - z = 4$ and $x + 4y + \lambda z = \mu$ has (i) No solution (ii) Unique solution.	CO1	PO1	06												
	b)	Find the eigenvalues and the corresponding eigenvectors of the matrix $A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$.	CO1	PO1	07												
	c)	Solve the following system of equations using Gauss Seidel method $27x + 6y - z = 85$, $6x + 15y + 2z = 72$, $x + y + 54z = 110$. Carryout three iterations.	CO1	PO1	07												
UNIT - 2																	
2	a)	Find the real root of the equation $\tan x = x$ near $x = 4.5$ using Newton-Raphson method. Correct to three decimal places.	CO1	PO1	06												
	b)	Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's 1/3 rd rule taking four equal strips.	CO1	PO1	07												
	c)	Estimate the number of students who obtained marks between 40 and 45 using Newton's Forward interpolation formula.	CO1	PO1	07												
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Marks</td> <td>30-40</td> <td>40-50</td> <td>50-60</td> <td>60-70</td> <td>70-80</td> </tr> <tr> <td>No. of Students</td> <td>31</td> <td>42</td> <td>51</td> <td>35</td> <td>31</td> </tr> </table>	Marks	30-40	40-50	50-60	60-70	70-80	No. of Students	31	42	51	35	31			
Marks	30-40	40-50	50-60	60-70	70-80												
No. of Students	31	42	51	35	31												
OR																	
3	a)	Using Runge-Kutta method of 4 th order, find the solution of the initial value problem $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$ & $h = 0.2$, at $x = 0.2$.	CO1	PO1	06												

	b)	Apply Lagrange's interpolation formula to find the value of y at $x = 7$ for the data given below	CO1	PO1	07										
		<table border="1"> <tr> <td>x</td><td>0</td><td>2</td><td>5</td><td>8</td></tr> <tr> <td>y</td><td>6</td><td>10</td><td>12</td><td>16</td></tr> </table>	x	0	2	5	8	y	6	10	12	16			
x	0	2	5	8											
y	6	10	12	16											
	c)	Apply Trapezoidal rule to evaluate $\int_0^1 \frac{dx}{1+x}$ by taking six equal strips.	CO1	PO1	07										
		UNIT - 3													
4	a)	Obtain the Fourier series expansion of $f(x) = x(2\pi - x)$ in $(0, 2\pi)$.	CO2	PO1	06										
	b)	Obtain the Fourier series of $f(x) = \begin{cases} -\pi, & \text{in } -\pi < x < 0 \\ x, & \text{in } 0 < x < \pi \end{cases}$.	CO2	PO1	07										
	c)	Find the inverse Fourier sine transform of $\frac{e^{-as}}{s}$, $a > 0$	CO2	PO1	07										
		OR													
5	a)	Obtain Fourier series for the function $f(x) = e^{-x}$ in $0 < x < 2$.	CO2	PO1	06										
	b)	Find the inverse Fourier transform of e^{-u^2} .	CO2	PO1	07										
	c)	Find the Fourier series of $f(x) = \begin{cases} 1 + \frac{4x}{3} & \text{in } -\frac{3}{2} < x < 0 \\ 1 - \frac{4x}{3} & \text{in } 0 < x < \frac{3}{2} \end{cases}$.	CO2	PO1	07										
		UNIT - 4													
6	a)	Derive Crank-Nicolson formula for the solution of one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$.	CO1	PO1	06										
	b)	Solve the initial boundary value problem $u_t = 4u_{xx}$ subject to the boundary conditions $u(0, t) = 0 = u(8, t)$, $t > 0$ and initial condition $u(x, 0) = 4x - \frac{x^2}{2}$, $0 \leq x \leq 8$ by Schmidt explicit formula. Carryout the computations up to one-time level by taking $h = 1$ and $k = 0.1$.	CO1	PO1	07										
	c)	<p>By using explicit three level formula, solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(0, t) = 0 = u(1, t)$ $t \geq 0$,</p> $u(x, 0) = \begin{cases} \frac{5x}{3} & \text{for } 0 < x \leq \frac{3}{5} \\ \frac{5(1-x)}{2} & \text{for } \frac{3}{5} < x < 1 \end{cases}$ <p>and $u_t(x, 0) = 0$ up to two time levels taking $h = \frac{1}{5}$ and $k = \frac{1}{10}$.</p>	CO1	PO1	07										

UNIT - 5					
7	a)	Find the extremal of the functional $\int_0^{\frac{\pi}{2}} (y'^2 - y^2 + 4y \cos x) dx$ with $y(0) = y(\frac{\pi}{2}) = 0$.	CO3	PO1	06
	b)	Derive the Euler's equation in the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.	CO3	PO1	07
	c)	Show that the shape of the heavy cable which hangs freely under gravity between two fixed points is a Catenary.	CO3	PO1	07

B.M.S.C.E. - ODD SEM 2023-24