

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering and Biotechnology

Course Code: 19MA3BSAPM

Course: Applied Mathematics

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. All questions have internal choices.

2. Missing data, if any, may be suitably assumed.

4	a)	Apply appropriate interpolation formula to estimate the number of students who have obtained marks between 40 and 45 marks from the data given below.	1	1	6												
		<table border="1"> <tr> <td>Marks</td><td>30-40</td><td>40-50</td><td>50-60</td><td>60-70</td><td>70-80</td></tr> <tr> <td>No of students</td><td>31</td><td>42</td><td>51</td><td>35</td><td>31</td></tr> </table>	Marks	30-40	40-50	50-60	60-70	70-80	No of students	31	42	51	35	31			
Marks	30-40	40-50	50-60	60-70	70-80												
No of students	31	42	51	35	31												
	b)	Apply the Runge-Kutta method of fourth order to compute $y(0.2)$ given $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$.	1	1	7												
	c)	Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cos x} dx$ using the Trapezoidal rule by taking seven ordinates.	1	1	7												
UNIT - 3																	
5	a)	Obtain the Fourier series expansion of the periodic function $f(x) = 2x - x^2$ over the interval $(0, 2l)$.	2	1	6												
	b)	The intensity of an alternating current after passing through a rectifier is given by $i(x) = \begin{cases} I_0 \sin x & \text{for } 0 \leq x \leq \pi \\ 0 & \text{for } \pi \leq x \leq 2\pi \end{cases}$ where I_0 is the maximum current and the period is 2π . Express $i(x)$ as a Fourier series.	2	1	7												
	c)	Find the inverse Fourier transform of $F(s) = e^{-s}$.	2	1	7												
OR																	
6	a)	Obtain the Fourier series expansion of the periodic function $f(x)$ over the interval $(0, 2l)$. Where $f(x) = \begin{cases} l - x & \text{for } 0 < x < l \\ 0 & \text{for } l < x \leq 2l \end{cases}$	2	1	6												
	b)	Obtain the Fourier series expansion of the periodic function $f(x) = \begin{cases} -\pi & \text{for } -\pi < x < 0 \\ x & \text{for } 0 < x < \pi \end{cases}$.	2	1	7												
	c)	Find the Fourier sine transform of $f(x) = e^{- x }$.	2	1	7												
UNIT - 4																	
7	a)	Derive the finite difference formula to solve the one-dimensional wave equation $u_{tt} = c^2 u_{xx}$.	1	1	6												
	b)	Approximate the solution of the boundary value problem $u_t = u_{xx}$ under the conditions $u(0, t) = u(1, t) = 0$ and $u(x, 0) = \sin \pi x$, $0 \leq x \leq 1$ using Schmidt method taking $h = 0.2$ and $\alpha = 1/2$.	1	1	7												
	c)	Evaluate the pivotal values of the equation $u_{tt} = 16u_{xx}$ taking $h = 1$ up to $t = 1.25$. The boundary conditions are $u(0, t) = 0$, $u(5, t) = 0$; $u_t(x, 0) = 0$ and $u(x, 0) = x^2(5 - x)$.	1	1	7												
OR																	
8	a)	Derive the expression for Crank-Nicolson method to solve the one-dimensional heat equation $u_t = c^2 u_{xx}$.	1	1	6												
	b)	Solve the wave equation $u_{tt} = u_{xx}$, given that $u_t(x, 0) = 0$, $u(0, t) = 0$, $u(1, t) = 0$ and $u(x, 0) = \sin \pi x$ for $0 \leq x \leq 1$, by taking $h = 0.25$ and $k = 0.2$. Compute up to two-time levels.	1	1	7												

	c)	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in $0 < x < 5, t \geq 0$ given that $u(x, 0) = 20, u(0, t) = 0$ and $u(5, t) = 100$. Compute u for two time-levels with $h = 1$ and $\alpha = \frac{1}{2}$.	1	1	7
		UNIT - 5			
9	a)	Find the extremal of the functional $\int_{x_0}^{x_1} (1 + x^2 y') y' dx$.	3	1	6
	b)	Solve the variational problem $\delta \int_0^1 (x + y + y'^2) dx = 0$ under the conditions $y(0) = 1$ and $y(1) = 2$.	3	1	7
	c)	Find the path in which a particle, in the absence of friction will slide from one point to another in the shortest time under the action of gravity.	3	1	7
		OR			
10	a)	Derive Euler's equation $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.	3	1	6
	b)	A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is a catenary.	3	1	7
	c)	Find the extremal of the functional $\int_{x_0}^{x_1} (y^2 + y'^2 - 2y \sin x) dx$ under the conditions $y(0) = y\left(\frac{\pi}{2}\right) = 0$.	3	1	7
