

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: BT / CH

Course Code: 19MA3BSAPM

Course: Applied Mathematics

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 15.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Show that the equations $-2x + y + z = a$; $x - 2y + z = b$ and $x + y - 2z = c$ do not have a solution unless $a + b + c = 0$. 6

b) Perform three iterations of the Gauss-Seidal iteration method to approximate the solution of the system of equations $-x + 6y + 27z = 85$; $2x + 15y + 6z = 72$ and $54x + y + z = 110$. 7

c) Obtain the eigenvalues and the corresponding eigenvectors of the matrix 7

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}.$$

UNIT - II

2 a) Obtain a real root correct to three decimal places of the equation $x \log_{10} x = 1.2$ near $x = 2.5$ using Newton- Raphson method. 6

b) A survey conducted in a slum reveals the following information as classified below 7

Income per day (Rs)	Under 100	100-200	200-300	300-400	400-500
Number of persons	20	45	115	210	115

Estimate the number of persons having income less than Rs. 450 per day using appropriate interpolation formula.

c) Evaluate $\int_0^1 \frac{dx}{1+x}$ by using Simpson's $\frac{1}{3}$ rd rule for $n = 6$. 7

OR

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

3 a) Apply Lagrange's interpolation to find $f(1.6)$ from the given data

6

x	1.2	2.0	2.5	3.0
$f(x)$	1.36	0.58	0.34	0.20

b) Apply Newton's forward formula to find the cubic polynomial satisfying

7

$$f(0) = 0, f(2) = 4, f(4) = 56, f(6) = 204, f(8) = 496 \text{ and } f(10) = 980.$$

c) Apply Runge-Kutta method of order four to find an approximate value of y at

7

$$x = 0.1, \text{ given that } y' = x + y^2 \text{ with } y(0) = 1 \text{ and } h = 0.1.$$

UNIT - III

4 a) Find the Fourier series of the periodic function $f(x) = |x|$ over the interval

6

$$(-\pi, \pi).$$

b) Find the Fourier series of the periodic function $f(x) = \begin{cases} 2-x & \text{in } 0 \leq x \leq 4 \\ x-6 & \text{in } 4 \leq x \leq 8 \end{cases}$

7

c) Find the Fourier cosine transform of the function e^{-x^2} .

7

OR

5 a) Find the inverse Fourier sine transform of $\frac{e^{-as}}{s}$, $a > 0$.

6

b) Find the Fourier series of the periodic function $f(x) = x(2\pi - x)$ in $(0, 2\pi)$.

7

c) Find the Fourier transform of $e^{-a^2 x^2}$, $a > 0$ and hence deduce that $e^{-x^2/2}$ is self-reciprocal with respect to Fourier transform.

UNIT - IV

6 a) Derive the explicit formula for the solution of one-dimensional wave equation

6

$$u_{tt} = c^2 u_{xx}.$$

b) Solve the parabolic equation $u_t = 4u_{xx}$ subjected to $u(0, t) = 0 = u(8, t)$, $t \geq 0$

7

$$\text{and } u(x, 0) = 4x - \frac{x^2}{2}, \text{ up to two time-levels taking } h = 1 \text{ and } k = 1/8.$$

c) Solve numerically the equation $u_t = u_{xx}$ under the conditions

7

$$u(0, t) = 0 = u(1, t), t \geq 0 \text{ and } u(x, 0) = \sin \pi x, 0 \leq x \leq 1 \text{ using Schmidt method up to two time-levels taking } h = 1/4 \text{ and } k = 1/96.$$

UNIT - V

7 a) Find the extremal of the functional $\int_0^1 \left(x + y + (y')^2 \right) dx = 0$ under the 6

conditions $y(0) = 1$ and $y(1) = 2$.

b) Derive the Euler's equation of the variational problem in the form 7

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0.$$

c) A heavy cable hangs freely under gravity between two fixed points. Show that 7
the shape of the cable is a Catenary.
