

--	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Chemical Engineering

Course Code: 21MA3BSAPM

Course: Applied Mathematics

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. All questions have internal choices.
2. Missing data, if any, may be suitably assumed.

			UNIT - 1	CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Find the rank of the matrix $\begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$ by reducing it to the echelon form.	1	1	6	
			b)	Apply Gauss-seidel iterative method to approximate the solution of the system of equations $27x + 6y - z = 85$, $6x + 15y + 2z = 72$ and $x + y + 54z = 110$. Carry out three iterations, taking the initial approximation to the solution as $(2, 3, 2)$.	1	1	7
			c)	Test for consistency and solve the following system of equations: $x + y + z = -3$, $3x + y - 2z = -2$ and $2x + 4y + 7z = 7$.	1	1	7
OR							
	2	a)	Apply Gauss elimination method to solve the system of equations $2x + y + 4z = 12$, $4x + 11y - z = 33$ and $8x - 3y + 2z = 20$.	1	1	6	
		b)	Find the values λ and μ for which the following system of equations $x + y + z = 6$, $x + 2y + 3z = 10$ and $x + 2y + \lambda z = \mu$ has (i) a unique solution, (ii) infinitely many solutions and (iii) no solution.	1	1	7	
		c)	Find all the eigenvalues and the corresponding eigenvectors of the following matrix $A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$.	1	1	7	
UNIT - 2							
	3	a)	Apply Newton-Raphson method to find the real root of the equation $3x = \cos x + 1$, near to 0.5, correct to three decimal places.	1	1	6	
		b)	Apply Newton's appropriate interpolation formula to evaluate $y(8)$ from $y(1) = 24$, $y(3) = 120$, $y(5) = 336$, $y(7) = 720$.	1	1	7	

	c)	Evaluate $\int_4^{5.2} \log_e x \, dx$ by taking six equal strips and by using Simpson's 1/3 rule.	1	1	7										
		OR													
4	a)	The following table gives the melting point of an alloy of lead and zinc, where t is the temperature in $^{\circ}\text{C}$ and p is the % of lead in the alloy:	1	1	6										
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>P</td><td>60</td><td>70</td><td>80</td><td>90</td></tr> <tr> <td>t</td><td>226</td><td>250</td><td>276</td><td>304</td></tr> </table> <p>Find the melting point of the alloy containing 84% of lead by applying Newton's interpolation formula.</p>	P	60	70	80	90	t	226	250	276	304			
P	60	70	80	90											
t	226	250	276	304											
	b)	Apply Lagrange's Interpolation formula to find the value of y when $x = 5$, for the following data:	1	1	7										
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>1</td><td>3</td><td>4</td><td>6</td></tr> <tr> <td>y</td><td>-3</td><td>9</td><td>30</td><td>132</td></tr> </table>	x	1	3	4	6	y	-3	9	30	132			
x	1	3	4	6											
y	-3	9	30	132											
	c)	Apply fourth order Runge-Kutta method to solve the initial value problem $\frac{dy}{dx} = 3e^x + 2y, y(0) = 0$ at $x = 0.1$ by taking $h = 0.1$.	1	1	7										
		UNIT - 3													
5	a)	Obtain the Fourier series of the periodic function $f(x) = x^2$ in $(-\pi, \pi)$.	2	1	6										
	b)	Obtain the Fourier series of the periodic function $f(x) = e^x$ in $(0, 2\pi)$.	2	1	7										
	c)	Find the Fourier sine transform of the function $f(x) = \begin{cases} 4x & 0 < x < 1 \\ 4-x & 1 < x < 4 \\ 0 & x > 4 \end{cases}$	2	1	7										
		OR													
6	a)	Obtain the Fourier series of the periodic function $f(x) = x $ in $(-\pi, \pi)$.	2	1	6										
	b)	Obtain the Fourier series of the periodic function $f(x) = x + x^2$ in $(-l, l)$.	2	1	7										
	c)	Find the inverse Fourier sine transform of $\frac{e^{-as}}{s}$, $a > 0$.	2	1	7										
		UNIT - 4													
7	a)	Derive Crank-Nicolson formula to solve numerically the one-dimensional heat equation $u_t = c^2 u_{xx}$.	1	1	6										

	b)	Find the numerical solution of the parabolic equation $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$ when $u(0, t) = 0, u(4, t) = 0$ and $u(x, 0) = x(4 - x)$ by taking $h = 1, k = 1$. Find the values up to $t = 3$.	1	1	7
	c)	Apply Schmidt method to solve the equation $u_t = u_{xx}$, subject to the conditions $u(0, t) = 0 = u(1, t), t \geq 0$ and $u(x, 0) = \sin \pi x, 0 \leq x \leq 1$. Carry out the computations for two -time levels taking $h = \frac{1}{3}, k = \frac{1}{36}$.	1	1	7
		OR			
8	a)	Derive the numerical solution of one-dimensional wave equation $u_{tt} = c^2 u_{xx}$.	1	1	6
	b)	Apply three-level formula to solve the wave equation $u_{tt} = 4u_{xx}$ subject to the boundary conditions $u(0, t) = 0 = u(4, t), t \geq 0$ and the initial conditions $u_t(x, 0) = 0$ and $u(x, 0) = x(4 - x)$ by taking $h = 1, k = \frac{1}{2}$. Carry out the computations upto two-time levels.	1	1	7
	c)	Evaluate the pivotal values of the equation $u_{xx} = 0.0625u_{tt}$ taking $h = 1$ and $k = \frac{1}{4}$ for $0 \leq t \leq 0.5$. The boundary conditions are $u(0, t) = 0 = u(5, t), t \geq 0$; $u_t(x, 0) = 0$ and $u(x, 0) = x^2(5 - x)$.	1	1	7
		UNIT - 5			
9	a)	Derive the Euler's equation of the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.	3	1	6
	b)	Find the extremal of the functional $I = \int_{x_1}^{x_2} (y^2 + y'^2 + 2ye^x) dx$.	3	1	7
	c)	Show that the shape of the heavy cable which hangs freely under gravity between two fixed points is a Catenary.	3	1	7
		OR			
10	a)	Prove that the geodesics on a plane are straight lines.	3	1	6
	b)	Find the path in which a particle in the absence of friction, will slide from one point to another in the shortest time under the action of gravity.	3	1	7
	c)	Find the extremal of the functional $I = \int_0^{\frac{\pi}{2}} \left(y^2 - (y')^2 + 4y \cos x \right) dx$ under the end conditions $y(0) = 0$; $y\left(\frac{\pi}{2}\right) = 0$.	3	1	7
