

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Business Systems

Course Code: 24MA3BSDBS

Course: Discrete Mathematics for Business Systems

Instructions: 1. All questions have internal choices.

2. Missing data, if any, may be suitably assumed.

Semester: III

Duration: 3 hrs.

Max Marks: 100

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - 1			CO	PO	Marks
1	a)	<p>Let p: A circle is a conic. q: $\sqrt{5}$ is an irrational number r: Exponential series is convergent.</p> <p>Express the following compound propositions in words.</p> <p>i) $p \wedge (\neg q)$ ii) $p \rightarrow (q \wedge \neg r)$ iii) $\neg p \leftrightarrow (q \vee r)$</p>	1	1	6
	b)	<p>Examine whether the given statement is a tautology or a contradiction using the required truth table</p> $[(p \vee q) \wedge (p \rightarrow r) \wedge (q \rightarrow r)] \rightarrow r$	1	1	7
	c)	<p>Show that i) $(p \wedge q) \rightarrow r \equiv (p \rightarrow r) \vee (q \rightarrow r)$ ii) $(p \vee q) \wedge [\neg(\neg p) \wedge q] \equiv p$ using laws of logic.</p>	1	1	7
OR					
2	a)	<p>Let p and q be the primitive statements for which the implication $p \rightarrow q$ is false. Determine the truth values of the following compound propositions:</p> <p>i) $\neg p \wedge q$ ii) $p \vee q$ iii) $(p \wedge q) \rightarrow q$.</p>	1	1	6
	b)	<p>Prove that, for any three propositions p, q and r</p> $[p \rightarrow (q \wedge r)] \Leftrightarrow [(p \rightarrow q) \vee (p \rightarrow r)]$ <p>by constructing the required truth table.</p>	1	1	7
	c)	<p>Test whether the given argument is valid or not:</p> <p>If Ravi goes out with friends, then he will not study.</p> <p>If Ravi does not study, his father becomes angry.</p> <p>His father is not angry.</p> <p>\therefore Ravi has not gone out with friends.</p>	2	1	7
UNIT - 2					
3	a)	<p>Find the sequences generated by the following function:</p> <p>(i) $2x^2(1-x)^{-1}$ (ii) $\frac{1}{1-x} + 2x^3$.</p>	1	1	6
	b)	<p>In how many ways can the 26 letters of the English alphabet be permuted so that none of the patterns CAR, DOG, PUN or BYTE occurs?</p>	2	1	7

	c)	Prove $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$ by mathematical induction for $n \geq 1$.	1	1	7
		OR			
4	a)	State the generalized pigeonhole principle. How many persons must be chosen in order that at least five of them will have birth days in the same calendar month?	1	1	6
	b)	Use generating function to determine in how many ways can two dozen identical robots be assigned to four assembly lines with at least 3 robots assigned to each line.	2	1	7
	c)	Solve the recurrence relation $2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n$ where $n \geq 0$, given that $a_0 = 0$, $a_1 = 1$ and $a_2 = 2$.	1	1	7
		UNIT – 3			
5	a)	Prove that $AB + A(B + C) + B(B + C) = B + AC$ using Boolean algebra techniques.	1	1	6
	b)	Obtain the truth table for the complement of $F = x\bar{y}z + \bar{x}yz$.	1	1	7
	c)	Construct the logic circuits using basic gates that produce the following outputs: i) $(A + B)\bar{A}$ ii) $(A + B + C)(\bar{A} \bar{B} \bar{C})$.	1	1	7
		OR			
6	a)	Obtain the dual of the following Boolean expressions: i. $(A + \bar{C})B + 0$ ii. $(A + B) + (\bar{C} + \bar{D})$ iii. $AB + AC + BC$	1	1	6
	b)	Determine the output expression associated with the given logic circuit and simplify it. Write the expression in each stage.	1	1	7
	c)		1	1	7
		Express the Boolean expression $f(A, B, C) = A + \bar{A} \bar{C} (B + C)$ as sum of minterms and product of maxterms.	1	1	7
		UNIT - 4			
7	a)	Define bipartite graph and complete bipartite graph. Show that the hypercube Q_3 is a bipartite graph but not a complete bipartite graph.	1	1	6
	b)	Suppose a committee has seven members, these members meet each day for lunch at a round table. They decide to sit in such a way that every member has different neighbors at each lunch. How many ways can this arrangement last? Also list the possible arrangements.	1	1	7

	c)	<p>Draw the complement of the graph below and then write the adjacency matrix of the complement of the graph.</p>	1	1	7
		OR			
8	a)	<p>Verify whether the following graphs are isomorphic or not by showing one to one correspondence between the vertices and edges of the two graphs.</p>	1	1	6
	b)	<p>Let G be a disconnected graph of even order n with two components each of which is complete. Prove that G has a minimum of $\frac{n(n-2)}{4}$ edges.</p>	1	1	7
	c)	<p>Apply Dijkstra's algorithm to obtain the shortest path and shortest distance from vertex A to vertex F in the weighted, directed network shown below.</p>	2	1	7
		UNIT - 5			
9	a)	<p>Define the chromatic number of a graph. Find the chromatic number of the Petersen graph as shown below.</p>	1	1	6
	b)	<p>Show that the Kuratowski's second graph is non-planar. Justify that removal of one edge from Kuratowski's second graph makes it a planar graph.</p>	1	1	7

	c)	<p>Apply Kruskal's algorithm to find a minimal spanning tree for the given weighted graph and hence find its weight.</p>	2	1	7																												
		OR																															
10	a)	Prove that a graph G is 2-chromatic if and only if it is a non-null bipartite graph.	1	1	6																												
	b)	Verify Euler's polyhedron formula for the given planar graph and obtain the dual of the given graph G.	1	1	7																												
	c)	<p>Eight cities A, B, C, D, E, F, G, H are required to be connected by a new railway network. The possible tracks and the cost involved to lay them (in crores of rupees) are summarized in the Table:</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Track between</th> <th>Cost</th> <th>Track between</th> <th>Cost</th> </tr> </thead> <tbody> <tr> <td></td> <td></td> <td>C and E</td> <td>95</td> </tr> <tr> <td>A and B</td> <td>155</td> <td>D and F</td> <td>100</td> </tr> <tr> <td>A and D</td> <td>145</td> <td>E and F</td> <td>150</td> </tr> <tr> <td>A and G</td> <td>120</td> <td>F and G</td> <td>140</td> </tr> <tr> <td>B and C</td> <td>145</td> <td>F and H</td> <td>150</td> </tr> <tr> <td>C and D</td> <td>150</td> <td>G and H</td> <td>160</td> </tr> </tbody> </table> <p>Determine a railway network of minimal cost that connects all these cities using Kruskal's algorithm.</p>	Track between	Cost	Track between	Cost			C and E	95	A and B	155	D and F	100	A and D	145	E and F	150	A and G	120	F and G	140	B and C	145	F and H	150	C and D	150	G and H	160	2	1	7
Track between	Cost	Track between	Cost																														
		C and E	95																														
A and B	155	D and F	100																														
A and D	145	E and F	150																														
A and G	120	F and G	140																														
B and C	145	F and H	150																														
C and D	150	G and H	160																														
