

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: AS/CV/EEE/ECE/EIE/IEM/ME/ML/TCE

Course Code: 19MA3BSEM3

Course: Engineering Mathematics – 3

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks																		
1	a)	Find the rank of the matrix $A = \begin{bmatrix} 2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \\ -4 & 5 & 12 & -1 \end{bmatrix}$ by reducing it to echelon form.	CO1	PO1	6																		
	b)	Solve the system of equations $x + y + z = 9, x - 2y + 3z = 8$ and $2x + y - z = 3$ by using Gauss Elimination Method.	CO1	PO1	7																		
	c)	Solve the system of equations $27x + 6y - z = 85, 6x + 15y + 2z = 72$ and $x + y + 54z = 110$ by using Gauss-Seidel Method. Perform 2 iterations.	CO1	PO1	7																		
		UNIT - II																					
2	a)	Obtain the complex form of the Fourier series for $f(x) = e^{-x}$ in $(-1,1)$.	CO2	PO1	6																		
	b)	Expand $f(x) = x^2$ as a Fourier Series in the interval $(-\pi, \pi)$.	CO2	PO1	7																		
	c)	Obtain the Fourier series upto first harmonic for the following data.	CO2	PO1	7																		
		<table border="1"> <tr> <td>x</td><td>0°</td><td>45°</td><td>90°</td><td>135°</td><td>180°</td><td>225°</td><td>270°</td><td>315°</td></tr> <tr> <td>y</td><td>2</td><td>1.5</td><td>1</td><td>0.5</td><td>0</td><td>0.5</td><td>1</td><td>1.5</td></tr> </table>	x	0°	45°	90°	135°	180°	225°	270°	315°	y	2	1.5	1	0.5	0	0.5	1	1.5			
x	0°	45°	90°	135°	180°	225°	270°	315°															
y	2	1.5	1	0.5	0	0.5	1	1.5															
		UNIT - III																					
3	a)	Obtain the Fourier cosine transform of the function $f(x) = \begin{cases} 4x & ; 0 < x < 1 \\ 4 - x & ; 1 < x < 4 \\ 0 & ; x > 4 \end{cases}$	CO2	PO1	6																		
	b)	Find the Fourier Sine transform of e^{-x} . Hence prove that $\int_0^\infty \frac{x \sin mx}{1+x^2} dx = \frac{\pi}{2} e^{-m}, m > 0$.	CO2	PO1	7																		
	c)	Using Parseval's identities for the function $f(t) = e^{-at}$ and $g(t) = e^{-bt}$, prove that $\int_0^\infty \frac{dt}{(a^2+t^2)(b^2+t^2)} = \frac{\pi}{2ab(a+b)}$.	CO2	PO1	7																		
		OR																					
4	a)	Find the Fourier cosine and sine transform of $e^{-ax}, a \geq 0$.	CO2	PO1	6																		

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Find the Fourier transform of $f(x) = \begin{cases} 1 - x & ; x \leq 1 \\ 0 & ; x > 1 \end{cases}$	CO2	PO1	7										
	c)	Employ Convolution theorem to find $F(f * g)$ given $f(x) = g(x) = \begin{cases} 1, & x \leq 1 \\ 0, & x > 1 \end{cases}$	CO2	PO1	7										
		UNIT - IV													
5	a)	Apply Newton-Raphson method to find the approximate root of the equation $3x = \cos x + 1$ that lies near $x = 0.6$.	CO1	PO1	6										
	b)	Apply Newton-Gregory backward interpolation formula to find $f(4)$ for the following data	CO1	PO1	7										
		<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>x</td> <td>0</td> <td>1</td> <td>2</td> <td>3</td> </tr> <tr> <td>$f(x)$</td> <td>1</td> <td>2</td> <td>1</td> <td>10</td> </tr> </table>	x	0	1	2	3	$f(x)$	1	2	1	10			
x	0	1	2	3											
$f(x)$	1	2	1	10											
	c)	Evaluate $\int_0^1 \frac{x}{1+x^2} dx$ by Weddle's rule by dividing the interval in to six equal parts.	CO1	PO1	7										
		UNIT - V													
6	a)	Find the extremal of the functional $\int_0^{\pi/2} [y^2 - (y')^2 + 2y \sin x] dx$ under the end conditions $y(0) = y\left(\frac{\pi}{2}\right) = 0$.	CO3	PO1	10										
	b)	Given that $Z(u_n) = \frac{2z^2+3z+4}{(z-3)^3}$, show that $u_1 = 2$, $u_2 = 21$ and $u_3 = 139$.	CO2	PO1	10										
		OR													
7	a)	Find the path in which a particle, in the absence of friction will slide from one point to another in the shortest time under the action of gravity.	CO3	PO1	10										
	b)	Solve the difference equation $u_{n+2} + 2u_{n+1} + u_n = n$ with $u_0 = u_1 = 0$ using Z-transforms.	CO2	PO1	10										
