

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Common to AS/CV/EEE/ECE/EIE/IEM/ME/ML/TCE

Duration: 3 hrs.

Course Code: 19MA3BSEM3

Max Marks: 100

Course: Engineering Mathematics - 3

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - 1	CO	PO	Marks																
1	a)		Find the rank of the matrix $A = \begin{pmatrix} 2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \\ -4 & 5 & 12 & -1 \end{pmatrix}$.	CO1	PO1	06																
	b)		Apply Gauss elimination method to solve the system of equations $2x - 3y + z = -1$, $x + 4y + 5z = 25$, $3x - 4y + z = 2$.	CO1	PO1	07																
	c)		Find eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.	CO1	PO1	07																
			UNIT - 2																			
2	a)		Find the Fourier series expansion of $f(x) = e^{-ax}$ in the interval $[-\pi, \pi]$.	CO2	PO1	06																
	b)		Obtain the Fourier series of $f(x) = \begin{cases} 1 + \frac{4x}{3} & \text{in } -\frac{3}{2} < x < 0 \\ 1 - \frac{4x}{3} & \text{in } 0 < x < \frac{3}{2} \end{cases}$.	CO2	PO1	07																
	c)		The following table gives the variation of periodic current over a period. <table border="1"> <tr> <td><i>t sec</i></td><td>0</td><td>T/6</td><td>T/3</td><td>T/2</td><td>2T/3</td><td>5T/6</td><td>T</td></tr> <tr> <td><i>A amp</i></td><td>1.98</td><td>1.30</td><td>1.05</td><td>1.30</td><td>-0.88</td><td>-0.25</td><td>1.98</td></tr> </table> Show that there is a direct current part of 0.75 amp in the variable current and obtain the amplitude of the first harmonic.	<i>t sec</i>	0	T/6	T/3	T/2	2T/3	5T/6	T	<i>A amp</i>	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98	CO2	PO1	07
<i>t sec</i>	0	T/6	T/3	T/2	2T/3	5T/6	T															
<i>A amp</i>	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98															
			UNIT - 3																			
3	a)		Find the Fourier transform of $f(x) = \begin{cases} 1, & x \leq 1 \\ 0, & x > 1 \end{cases}$. Hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$.	CO2	PO1	06																
	b)		Find Fourier sine transform of $e^{- x }$. Hence show that $\int_0^\infty \frac{x \sin mx}{1+x^2} dx = \frac{\pi}{2} e^{-m}$, $m > 0$.	CO2	PO1	07																
	c)		Using Parseval's identity for Fourier Cosine transforms to the functions $f(x) = e^{-ax}$ and $g(x) = e^{-bx}$ prove that $\int_0^\infty \frac{dx}{(a^2 + x^2)(b^2 + x^2)} = \frac{\pi}{2ab(a+b)}, \quad a > 0, b > 0.$	CO2	PO1	07																
			OR																			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

4	a)	<p>Find the Fourier transform of $f(x) = \begin{cases} 1-x^2, & x \leq 1 \\ 0, & x > 1 \end{cases}$</p> <p>Hence evaluate $\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$.</p>	CO2	PO1	06
	b)	<p>Find the Fourier cosine transform of $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2-x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$</p>	CO2	PO1	07
	c)	<p>Solve the Integral equation $\int_0^\infty f(x) \cos sx dx = \begin{cases} 1-s, & 0 \leq s \leq 1 \\ 0, & s > 1 \end{cases}$.</p> <p>Hence deduce that $\int_0^\infty \frac{1-\cos x}{x^2} dx = \frac{\pi}{2}$.</p>	CO2	PO1	07
UNIT - 4					
5	a)	<p>Find the real root of the equation $\cos x = xe^x$, which is nearer to $x = 0.5$ by Newton-Raphson method, correct to three decimal places.</p>	CO1	PO1	06
	b)	<p>Find y at $x = 5$ if $y(1) = -3$, $y(3) = 9$, $y(4) = 30$, $y(6) = 132$ using Lagrange's interpolation formula.</p>	CO1	PO1	07
	c)	<p>Apply Runge-Kutta method of fourth order to find an approximate value of y when $x = 0.2$ given that $\frac{dy}{dx} = x + y$, $y(0) = 1$ taking $h = 0.2$.</p>	CO1	PO1	07
UNIT - 5					
6	a)	<p>Derive the Euler's equation in the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.</p>	CO3	PO1	06
	b)	<p>Find the equation of a plane curve on which a particle in the absence of friction, will slide from one point to another in shortest time under the action of gravity.</p>	CO3	PO1	07
	c)	<p>Find the z transform of the following: (i) $\sin(3n + 5)$ (ii) $\cos\left(\frac{n\pi}{2} + \frac{\pi}{4}\right)$.</p>	CO2	PO1	07
OR					
7	a)	<p>A heavy cable hangs freely under the gravity between two fixed points. Show that the shape of a cable is a Catenary.</p>	CO3	PO1	06
	b)	<p>Find an extremal of the functional $\int_0^{\frac{\pi}{2}} (y'^2 - y^2 + 4y \cos x) dx$ with $y(0) = y\left(\frac{\pi}{2}\right) = 0$.</p>	CO3	PO1	07
	c)	<p>Find the Z-transform of $\cosh n\theta$ and $\sinh n\theta$.</p>	CO2	PO1	07
