

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: AS/CV/EEE/ECE/EIE/IEM/ME/ML/TCE

Course Code: 19MA3BSEM3

Course: ENGINEERING MATHEMATICS – 3

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. All questions have internal choices.

2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks														
1	a)	Solve the system of equations by LU factorization method $2x + y + 4z = 12$; $8x - 3y + 2z = 20$ and $4x + 11y - z = 33$.	1	1	6														
	b)	Solve the system of linear equations $9x + 2y + 4z = 20$, $x + 10y + 4z = 6$ and $2x - 4y + 10z = -15$ by Gauss-Seidel method with initial vector $(1,0,0)$. Perform three iterations.	1	1	7														
	c)	Determine the eigen values and eigen vectors of the matrix $\begin{bmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{bmatrix}$	1	1	7														
OR																			
2	a)	Find the rank of the matrix $\begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$	1	1	6														
	b)	Solve the system of equations using Gauss Elimination method $2x + y + 3z = 1$, $2x + 6y + 8z = 3$ and $6x + 8y + 18z = 6$.	1	1	7														
	c)	Diagonalize the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	1	1	7														
UNIT - 2																			
3	a)	Obtain the Fourier series expansion of the periodic function $f(x) = x^3$ in the interval $(-\pi, \pi)$.	2	1	6														
	b)	Expand the function $f(x) = \begin{cases} 1 + 2x & \text{when } -3 < x \leq 0 \\ 1 - 2x & \text{when } 0 \leq x < 3 \end{cases}$ as a Fourier series	2	1	7														
	c)	Obtain the constant term and first cosine and sine terms in the Fourier expansion of y from the following table:	2	1	7														
		<table border="1" style="display: inline-table;"> <tr> <td>x</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>y</td><td>9</td><td>18</td><td>24</td><td>28</td><td>26</td><td>20</td></tr> </table>	x	0	1	2	3	4	5	y	9	18	24	28	26	20			
x	0	1	2	3	4	5													
y	9	18	24	28	26	20													

Important Note: Completing your answers compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR

		OR		
4	a)	Find Fourier series for $f(x) = x^2$, $-\pi \leq x \leq \pi$.	2	6
	b)	Obtain the Fourier series expansion of the function $f(x) = \begin{cases} x & \text{in } 0 < x < \pi \\ x - 2\pi & \text{in } \pi < x < 2\pi \end{cases}$	2	7
	c)	Obtain the first two harmonics of the Fourier expansion of $f(x)$ from the following table:	2	7

UNIT - 3

5	a)	Find Fourier transform of $f(x) = \begin{cases} 1 - x^2, & x < 1 \\ 0, & x > 1 \end{cases}$	2	6
	b)	Find Fourier cosine transform of $f(x) = e^{-ax}$, ($a > 0$)	2	7
	c)	Prove that $\int_0^\infty \frac{dx}{(a^2 + x^2)(b^2 + x^2)} = \frac{2}{\pi ab(a+b)}$ using Parseval's identity.	2	7

OR

6	a)	Using Parseval's identity evaluate $\int_0^\infty \frac{dt}{(1+t^2)^2}$.	2	6
	b)	Find Fourier cosine transform of $f(x) = e^{-a^2 x^2}$	2	7
	c)	Find Fourier transform of $f(x) = \begin{cases} 1, & x < 1 \\ 0, & x > 1 \end{cases}$.	2	7

UNIT - 4

7	a)	From the following table find the number of students who obtained marks between 40-45 using appropriate interpolation formula (correct to 3 decimal places).	1	6																				
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Marks</td> <td>30-40</td> <td>40-50</td> <td>50-60</td> <td>60-70</td> <td>70-80</td> </tr> <tr> <td>No. of students</td> <td>31</td> <td>42</td> <td>51</td> <td>35</td> <td>31</td> </tr> </table>	Marks	30-40	40-50	50-60	60-70	70-80	No. of students	31	42	51	35	31										
Marks	30-40	40-50	50-60	60-70	70-80																			
No. of students	31	42	51	35	31																			
	b)	The velocity of a particle at a distance s from a point on its linear path is given by the following table:	1	7																				
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>$s(m)$</td> <td>0</td> <td>2.5</td> <td>5</td> <td>7.5</td> <td>10</td> <td>12.5</td> <td>15</td> <td>17.5</td> <td>20</td> </tr> <tr> <td>$v(m/sec)$</td> <td>16</td> <td>19</td> <td>21</td> <td>22</td> <td>20</td> <td>17</td> <td>13</td> <td>11</td> <td>9</td> </tr> </table>	$s(m)$	0	2.5	5	7.5	10	12.5	15	17.5	20	$v(m/sec)$	16	19	21	22	20	17	13	11	9		
$s(m)$	0	2.5	5	7.5	10	12.5	15	17.5	20															
$v(m/sec)$	16	19	21	22	20	17	13	11	9															
		Estimate the time taken by the particle to traverse the distance of 20m using Simpson's 3/8ths rule (correct to 3 decimal places).																						
	c)	Given $\frac{dy}{dx} = e^x + y$, $y(0) = 0$ compute $y(0.2)$ using Modified Euler's method correct to 3 decimal places.	1	7																				
		OR																						
8	a)	Apply Newton-Raphson method to find $\sqrt[3]{37}$ correct to 3 decimal places.	1	6																				

	b)	A body is in the form of a solid of revolution. The diameter D in cms of its cross section at a distance x cm from one end are given below. Estimate the volume of the solid (correct to 3 decimal places).	1	1	7																
		<table border="1"> <tr> <td>x</td><td>0</td><td>2.5</td><td>5</td><td>7.5</td><td>10</td><td>12.5</td><td>15</td></tr> <tr> <td>D</td><td>5</td><td>5.5</td><td>6</td><td>6.75</td><td>6.25</td><td>5.5</td><td>4</td></tr> </table>	x	0	2.5	5	7.5	10	12.5	15	D	5	5.5	6	6.75	6.25	5.5	4			
x	0	2.5	5	7.5	10	12.5	15														
D	5	5.5	6	6.75	6.25	5.5	4														
	c)	Apply Runge-Kutta method of order 4 to find $y(0.2)$ given that $\frac{dy}{dx} = 3x + \frac{y}{2}$, $y(0) = 1$ and $h = 0.2$ correct to 4 decimal places.	1	1	7																
UNIT - 5																					
9	a)	Find Z-transform of $\left\{ \cos\left(\frac{n\pi}{2} + \frac{\pi}{4}\right) \right\}$.	2	1	6																
	b)	Solve the difference equation $y_{n+2} - 5y_{n+1} + 6y_n = 6n$ if $y(0) = 0$ and $y(1) = 0$.	2	1	7																
	c)	Find the extremal of the functional integral $\int_{x_1}^{x_2} (1 + xy' + xy'^2) dx$.	3	1	7																
OR																					
10	a)	Find the Z-transform of $\{\sin(3n + 5)\}$.	2	1	6																
	b)	Derive a Euler's equation in the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.	2	1	7																
	c)	Find the geodesics on a surface given that the arc length on the surface is $s = \int_{x_1}^{x_2} \sqrt{x(1 + y'^2)} dx$.	3	1	7																
