

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: AS/CV/EEE/ECE/EIE/IEM/ME/MD/ETE

Course Code: 19MA3BSEM3

Course: Engineering Mathematics-3

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 12.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Test for consistency and solve the system of equations $x+2y+3z=14$; $4x+5y+7z=35$; $3x+3y+4z=21$. 6

b) Apply LU decomposition method to solve the system of equations $2x+y+4z=12$; $4x+11y-z=33$; $8x-3y+2z=20$. 7

c) Find all the eigenvalues and the corresponding eigenvectors of the matrix 7

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$

UNIT - II

2 a) Obtain the complex form of the Fourier series for the periodic function 6

$$f(x) = \begin{cases} -k & \text{in } -\pi < x < 0 \\ k & \text{in } 0 < x < \pi \end{cases}.$$

b) Obtain the Fourier series of the periodic function $f(x) = |x|$ in $(-\pi, \pi)$ and hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$. 7

c) Obtain the Fourier series by neglecting the terms higher than first harmonics for the following data. 7

x°	0	45	90	135	180	225	270	315
y	2	1.5	1	0.5	0	0.5	1	1.5

UNIT - III

3 a) Find the Fourier sine and cosine transform of the function $f(x) = e^{-ax}$, $a > 0$. 6

b) Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{in } |x| \leq a \\ 0 & \text{in } |x| > a \end{cases}$ and hence show that 7

$$\int_0^{\infty} \frac{\sin x - x \cos x}{x^3} dx = \frac{\pi}{4}.$$

c) Solve the integral equation $\int_0^\infty f(x) \cos(sx) dx = \begin{cases} 1-s & \text{in } 0 \leq s \leq 1 \\ 0 & \text{in } s > 1 \end{cases}$. Hence evaluate $\int_0^\infty \frac{1-\cos x}{x^2} dx$.

7

OR

4 a) Find the Fourier cosine transform of the function $f(x) = \begin{cases} 4x & \text{in } 0 < x < 1 \\ 4-x & \text{in } 1 < x < 4 \\ 0 & \text{in } x > 4 \end{cases}$.

b) Find the Fourier transform of $f(x) = e^{-a^2 x^2}$. Hence deduce that $e^{-x^2/2}$ is self-reciprocal with respect to Fourier transform.

c) Apply Parseval's identity for Fourier cosine transform to the functions $f(t) = e^{-at}$ and $g(t) = e^{-bt}$ to show that $\int_0^\infty \frac{dt}{(a^2 + t^2)(b^2 + t^2)} = \frac{\pi}{2ab(a+b)}$ where $a > 0, b > 0$.

7

7

7

UNIT - IV

5 a) Apply Lagrange's interpolation formula to find $f(2)$ for the following data

x	1	3	4	6
y	4	40	85	2

b) Evaluate $\int_0^1 \frac{x}{1+x^2} dx$ by using Simpson's $\frac{1}{3}^{rd}$ rule by dividing the interval into six equal parts. Hence find an approximate value of $\log_e 2$.

c) Apply fourth order Runge-Kutta method to find y at $x=0.1$ given that $\frac{dy}{dx} = 3e^x + 2y$, $y(0) = 0$ and $h = 0.1$.

6

7

7

UNIT - V

6 a) Find the Z-transform of i) $\cos(n\theta)$ ii) $\sin(n\theta)$.

b) Find the extremal of the functional $\int_0^{\pi/2} \left[(y')^2 - y^2 + 4y \cos x \right] dx$ under the end conditions $y(0) = y\left(\frac{\pi}{2}\right) = 0$.

c) A uniform chain of fixed length l is freely suspended between two points so as to hang at rest under the action of gravity. Determine the shape of the curve.

6

7

7

OR

7 a) Find an extremal of the functional $\int_0^1 \sqrt{1+y'^2} dx$ under the end conditions $y(0) = 1$ and $y(1) = 2$.

b) Find the inverse Z-transform of $\frac{3z^2 + z}{(5z-1)(5z+1)}$.

c) Solve $u_{n+2} + 3u_{n+1} + 2u_n = 3^n$ with $u_0 = 0$ and $u_1 = 1$ using Z-transforms.

6

7

7

SUPPLEMENTARY EXAMS 2023