

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

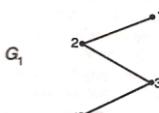
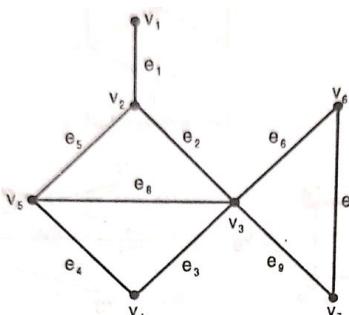
January / February 2025 Semester End Main Examinations

Programme: B.E.

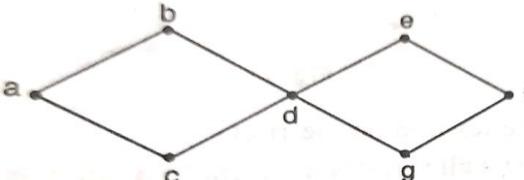
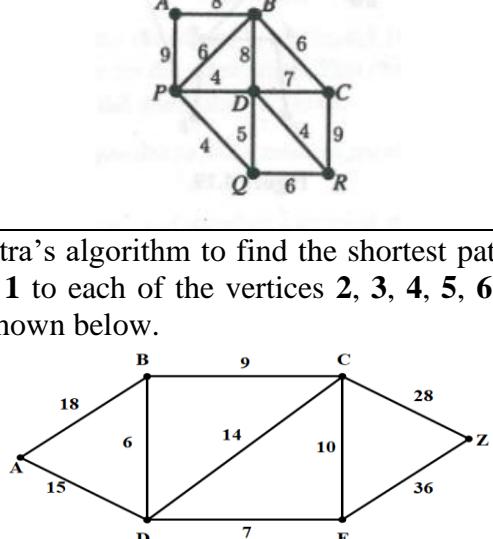
Semester: III

Branch: Machine Learning

Duration: 3 hrs.



Course Code: 21MA3BSMAI

Max Marks: 100



Course: Mathematical Foundations for AI & ML

Instructions: 1. All questions have internal choices.

2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	<p>(i) Define degree of a vertex.</p> <p>(ii) How many vertices are needed to construct a graph with 7 edges in which each vertex is of degree 2?</p>	1	1	6
	b)	<p>(i) Define Isomorphic graph.</p> <p>(ii) Verify that the following graphs are isomorphic or not?</p> <div style="text-align: center;"> </div>	1	1	7
	c)	<p>(i) Define Incidence matrix.</p> <p>(ii) Draw the undirected graph corresponding to the adjacency matrix</p> $A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 0 \end{bmatrix}$	1	1	7
OR					
2	a)	<p>Given a graph G,</p> <div style="text-align: center;"> </div> <p>find</p> <p>(i) A walk of length 8 starting with vertex v_1 and ending with vertex v_6.</p> <p>(ii) A path of length 4 starting with vertex v_1 and ending with vertex v_4.</p> <p>(iii) A cycle of length 4 starting with vertex v_2.</p>	1	1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Define (i) Euler Graph (ii) Hamiltonian path (iii) verify the following graph whether it is Eulerian or Hamiltonian:	1	1	7
	c)	<p>Let G be a disconnected graph of even order n with two components each of which is complete then prove that G has a minimum of $\frac{n(n-2)}{4}$ edges.</p>	1	1	7
		UNIT - 2			
3	a)	Prove that there is one and only one path between every pair of vertices in a tree T .	1	1	6
	b)	Apply BFS algorithm to find a spanning tree of a graph G given below.	1	1	7
	c)	<p>Apply Prim's algorithm to find the minimal spanning tree of the weighted graph given below.</p>	1	1	7
		OR			
4	a)	Prove that any connected graph G with n vertices and $(n-1)$ edges is a tree.	1	1	6
	b)	Apply Kruskal's algorithm to find the minimal spanning tree and its weight for the weighted graph shown below.	1	1	7
	c)	<p>Apply the Dijkstra's algorithm to find the shortest path and its weight from the vertex 1 to each of the vertices 2, 3, 4, 5, 6 in the weighted directed graph shown below.</p>	1	1	7

UNIT - 3					
5	a)	<p>Find the coefficients of</p> <p>i. x^0 in the expansion of $\left(3x^2 - \frac{2}{x}\right)^{15}$ and</p> <p>ii. x^{12} in the expansion of $x^3(1-2x)^{10}$.</p>	2	1	6
	b)	<p>Consider the 6 digits' number 1, 3, 4, 5, 6 and 8 and repetitions of digits are allowed. (i) How many 3-digit numbers can be found. (ii) How many 3-digit numbers must contain the digit 5.</p>	2	1	7
	c)	<p>A man has 7 relatives, 4 of them are ladies and 3 gentlemen, his wife has 7 relatives and 3 of them are ladies and 4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3 gentlemen so that there are 3 of man's relatives and 3 of wife's relatives?</p>	2	1	7
OR					
6	a)	<p>In how many ways can one select two books from different subjects from among 6 distinct Computer science books, 3 distinct Mathematics books and 2 distinct Chemistry books?</p>	2	1	6
	b)	<p>In how many ways can the letters of the word COMPUTER be arranged? How many of them begin with C and end with R? How many of them do not begin with C but end with R?</p>	2	1	7
	c)	<p>If 10 persons were invited for a party, in how many ways can they and the host be seated at a circular table? In how many of these ways will 2 particular persons on either side of the host?</p>	2	1	7
UNIT - 4					
7	a)	<p>Solve the recurrence relation $a_n = a_{n-1} + 2$, $n \geq 2$ subject to the initial condition $a_1 = 3$.</p>	2	1	6
	b)	<p>Solve the recurrence relation $a_n = 4(a_{n-1} - a_{n-2})$ subject to the initial conditions $a_0 = a_1 = 1$.</p>	2	1	7
	c)	<p>Apply mathematical induction to prove that $n^3 + 2n$ is divisible by 3 for any positive integer n.</p>	2	1	7
OR					
8	a)	<p>Apply the mathematical induction to prove that $3^n - 1$ is divisible by 2.</p>	2	1	6
	b)	<p>Solve the recurrence relation $a_n = 7a_{n-1} - 10a_{n-2}$ subject to the initial conditions $a_0 = 2, a_1 = 3$.</p>	2	1	7
	c)	<p>Solve the recurrence relation $a_n = a_{n-1} + 3^n$ subject to the initial condition $a_0 = 1$.</p>	2	1	7
UNIT - 5					
9	a)	<p>Find the remainder when 72^{1001} is divisible by 31.</p>	3	1	6
	b)	<p>Apply Chinese remainder theorem to solve $x \equiv 2 \pmod{5}$, $x \equiv 4 \pmod{7}$ and $x \equiv 5 \pmod{11}$.</p>	3	1	7
	c)	<p>Apply RSA algorithm to encrypt the message $m = 2$ using prime numbers $p = 3$ and $q = 11$ by finding the encryption key.</p>	3	1	7

OR						
10	a)	Apply the Fermat's little theorem to show that $8^{30} - 1$ is divisible by 31.	3	1	6	
	b)	Solve the linear Diophantine equation $15x + 21y = 39$.	3	1	7	
	c)	Solve the polynomial congruence: $x^3 + 3x + 5 \equiv 0 \pmod{9}$.	3	1	7	

B.M.S.C.E. - ODD SEM 2024-25