

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 15MA3GCMAT

Max Marks: 100

Course: Engineering Mathematics-3

Instructions: 1. All questions have internal choices.
2. Missing data, if any, may be suitably assumed.

			UNIT - 1	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Discuss the consistency and hence solve the system of equations $x_1 + 2x_2 + 2x_3 = 4$, $x_2 - x_3 = 1$, $x_1 + 3x_2 = 0$.	1	1	6
		b)	Apply Gauss-Seidel iterative method to find the approximate solution of the system of equations $27x_1 + 6x_2 - x_3 = 85$, $6x_1 + 15x_2 + 2x_3 = 72$, $x_1 + x_2 + 54x_3 = 110$ with initial solution as $(0, 0, 0)$. Perform 3 iterations.	1	1	7
		c)	Determine the eigen values and corresponding eigen vectors of the matrix $A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$.	1	1	7
			OR			
B.M.S. COLLEGE OF ENGINEERING	2	a)	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$.	1	1	6
		b)	Apply Gauss-Seidel iterative method to solve the system of equations: $10x + y + z = 12$, $x + 10y + z = 12$, $x + y + 10z = 12$. with initial solution as $(0, 0, 0)$. Perform 3 iterations.	1	1	7
		c)	Find the eigen values and the corresponding eigen vectors of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$.	1	1	7
			UNIT - 2			
B.M.S. COLLEGE OF ENGINEERING	3	a)	Obtain the Fourier series expansion of the periodic function $f(x) = e^{-2x}$ in $(0, 2\pi)$.	2	1	6
		b)	Find the Fourier series of the triangular wave given by the function $f(x) = \begin{cases} 1 + \frac{4x}{3} & -\frac{3}{2} < x < 0 \\ 1 - \frac{4x}{3} & 0 < x < \frac{3}{2} \end{cases}$	2	1	7

	c)	Express y as a Fourier series in the interval $(0, 2l)$ up to the first harmonic term for the following data: <table border="1"> <tr> <td>x</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>y</td><td>4</td><td>8</td><td>15</td><td>7</td><td>6</td><td>2</td></tr> </table>	x	0	1	2	3	4	5	y	4	8	15	7	6	2	2	1	7
x	0	1	2	3	4	5													
y	4	8	15	7	6	2													
		OR																	
4	a)	Obtain the Fourier series expansion of $f(x) = x$ in the interval $(0, 2l)$.	2	1	6														
	b)	Obtain the Fourier series expansion of $f(x) = x \cos x$ in the interval $(-\pi, \pi)$.	2	1	7														
	c)	Obtain the Fourier series of y up to the first harmonic term from the following data: <table border="1"> <tr> <td>x</td><td>0^0</td><td>60^0</td><td>120^0</td><td>180^0</td><td>240^0</td><td>300^0</td></tr> <tr> <td>y</td><td>7.9</td><td>7.2</td><td>3.6</td><td>0.5</td><td>0.9</td><td>6.8</td></tr> </table>	x	0^0	60^0	120^0	180^0	240^0	300^0	y	7.9	7.2	3.6	0.5	0.9	6.8	2	1	7
x	0^0	60^0	120^0	180^0	240^0	300^0													
y	7.9	7.2	3.6	0.5	0.9	6.8													
		UNIT - 3																	
5	a)	Form the partial differential equation by eliminating the arbitrary functions from $z = f(x + at) + g(x - at)$.	4	1	6														
	b)	Solve: $x^2(y - z)p + y^2(z - x)q = z^2(x - y)$.	4	1	7														
	c)	Obtain the various possible solutions of one-dimensional heat equation $u_t = c^2 u_{xx}$ by the method of separation of variables.	3	1	7														
		OR																	
6	a)	Form the partial differential equation by eliminating the arbitrary function F from $F(x^2 + y^2, z - xy) = 0$.	4	1	6														
	b)	Solve: $(mz - ny)p + (nx - lz)q = ly - mx$.	4	1	7														
	c)	Obtain the various possible solutions of one-dimensional wave equation $u_{tt} = c^2 u_{xx}$ by the method of separation of variables	3	1	7														
		UNIT - 4																	
7	a)	Find the inverse Fourier transform of the function $e^{- s a}$.	2	1	6														
	b)	Find the Fourier Transform of the function $f(x) = \begin{cases} 1 & \text{for } x \leq 1 \\ 0 & \text{for } x > 1 \end{cases}$	2	1	7														
	c)	Solve the integral equation $\int_0^\infty f(x) \sin tx \, dx = \begin{cases} 1, & 0 \leq t \leq 1 \\ 2, & 1 \leq t \leq 2 \\ 0, & t \geq 2 \end{cases}$	2	1	7														
		OR																	
8	a)	Find the inverse Fourier transform of $F[s] = e^{-s^2}$.	2	1	6														
	b)	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & x \leq a \\ 0 & x > a \end{cases}$.	2	1	7														
	c)	Find the Fourier cosine transform of the function $f(x) = \begin{cases} x & 0 < x < 1 \\ 2 - x & 1 < x < 2 \\ 0 & \text{otherwise} \end{cases}$	2	1	7														

UNIT - 5					
9	a)	<p>Find the extremal of the functional $\int_0^{\frac{\pi}{2}} (y'^2 - y^2 + 4y \cos x) dx$, given $y(0) = y\left(\frac{\pi}{2}\right) = 0$</p>	5	1	6
	b)	Show that the curve joining the points $(1,0)$ and $(2,1)$ for which $I = \int_1^2 \frac{1}{x} \sqrt{1+y'^2} dx$ is an extremum is a circle	5	1	7
	c)	Find the path on which a particle in the absence of friction will slide from one point to another in shortest time under the action of gravity.	5	1	7
		OR			
10	a)	Derive Euler's equation in the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.	5	1	6
	b)	<p>Solve the variational problem $\delta \left(\int_0^{\frac{\pi}{2}} (y^2 - y'^2) dx \right) = 0$ under the conditions $y(0) = 0$ and $y\left(\frac{\pi}{2}\right) = 2$.</p>	5	1	7
	c)	A heavy cable hangs freely under the gravity between two fixed points. Show that the shape of the cable is Catenary.	5	1	7
