

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 23MA3BSMCV

Course: Mathematics for Civil Engineering- 3

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of Statistical tables are permitted

			UNIT - 1						CO	PO	Marks																					
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	The following table gives the production (in thousand units) of a certain commodity in different years						CO1	PO1	06																					
			<table border="1"> <tr> <td>Year (x)</td> <td>1968</td> <td>1978</td> <td>1988</td> <td>1998</td> <td>2008</td> </tr> <tr> <td>Production (y)</td> <td>8</td> <td>10</td> <td>12</td> <td>10</td> <td>16</td> </tr> </table> Fit a straight line to the data and estimate the production of the year 2015.						Year (x)	1968	1978	1988	1998	2008	Production (y)	8	10	12	10	16												
Year (x)	1968	1978	1988	1998	2008																											
Production (y)	8	10	12	10	16																											
	b)	Find the coefficient of correlation and hence find the lines of regression of the following data:						CO1	PO1	07																						
	c)	If θ is the angle between the lines of regression then show that $\tan \theta = \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \left(\frac{1-r^2}{r} \right)$ with usual notations.						CO1	PO1	07																						
OR																																
2	2	a)	Obtain a curve of best fit of the form $y = a x^b$ to the following data:						CO1	PO1	06																					
			<table border="1"> <tr> <td>x</td> <td>0.5</td> <td>1.0</td> <td>1.5</td> <td>2.0</td> <td>2.5</td> <td>3.0</td> </tr> <tr> <td>y</td> <td>1.62</td> <td>1.00</td> <td>0.75</td> <td>0.62</td> <td>0.52</td> <td>0.46</td> </tr> </table>						x	0.5	1.0	1.5	2.0	2.5	3.0	y	1.62	1.00	0.75	0.62	0.52	0.46										
x	0.5	1.0	1.5	2.0	2.5	3.0																										
y	1.62	1.00	0.75	0.62	0.52	0.46																										
	b)	Given						CO1	PO1	07																						
<table border="1"> <tr> <td></td> <td>x- series</td> <td>y-series</td> </tr> <tr> <td>Mean</td> <td>18</td> <td>100</td> </tr> <tr> <td>Standard deviation</td> <td>14</td> <td>20</td> </tr> </table> and $r = 0.8$ write down the equations of lines of regression and hence find the most probable value of y when $x = 70$.													x- series	y-series	Mean	18	100	Standard deviation	14	20												
	x- series	y-series																														
Mean	18	100																														
Standard deviation	14	20																														
		c)	Ten students got the following percentage of marks in two subjects x and y . Compute their rank correlation						CO1	PO1	07																					
			<table border="1"> <tr> <td>Marks in x</td> <td>68</td> <td>64</td> <td>75</td> <td>50</td> <td>64</td> <td>80</td> <td>75</td> <td>40</td> <td>55</td> <td>64</td> </tr> <tr> <td>Marks in y</td> <td>62</td> <td>58</td> <td>68</td> <td>45</td> <td>81</td> <td>60</td> <td>68</td> <td>48</td> <td>50</td> <td>70</td> </tr> </table>						Marks in x	68	64	75	50	64	80	75	40	55	64	Marks in y	62	58	68	45	81	60	68	48	50	70		
Marks in x	68	64	75	50	64	80	75	40	55	64																						
Marks in y	62	58	68	45	81	60	68	48	50	70																						

UNIT - 2																					
3	a)	The number of industrial injuries per working week in a particular factory is known to follow a Poisson distribution with mean 0.5. Find the probability that (a) in a particular week there will be: (i) less than 2 accidents, (ii) more than 2 accidents; (b) in a three-week period there will be no accidents.	CO1	PO1	06																
	b)	In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution.	CO1	PO1	07																
	c)	The joint probability function for two discrete random variables x and y is given by the following table	CO1	PO1	07																
UNIT - 3																					
4	a)	Given that $f(t) = \begin{cases} a & 0 \leq t < a \\ -a & a < t \leq 2a \end{cases}$ where $f(t + 2a) = f(t)$ show that $L\{f(t)\} = \frac{a}{s} \tanh\left(\frac{as}{2}\right)$.	CO1	PO1	06																
	b)	Find the inverse Laplace transform of $F(s) = \frac{s^2 + 6s + 9}{(s-1)(s-2)(s+4)}$.	CO1	PO1	07																
	c)	Solve the initial value problem by using Laplace transform $y'' + 4y' + 4y = e^{-t}$, $y(0) = 0$, $y'(0) = 0$.	CO1	PO1	07																
OR																					
5	a)	Evaluate $L\left[\frac{e^t \sin(3t) \sin(t)}{t}\right]$.	CO1	PO1	06																
	b)	Express the given function $f(t) = \begin{cases} \sin t & 0 \leq t \leq \pi \\ \sin 2t & \pi \leq t \leq 2\pi \\ \sin 3t & t \geq 2\pi \end{cases}$ in terms of unit step function and hence find its Laplace transform.	CO1	PO1	07																
	c)	Solve the initial value problem by using Laplace transform $x'' - 2x' + x = e^t$, $x(0) = 2$, $x'(0) = -1$.	CO1	PO1	07																
UNIT - 4																					
6	a)	Obtain the Fourier series of the function $f(x) = \begin{cases} x & \text{in } 0 < x < \pi \\ x - 2\pi & \text{in } \pi < x < 2\pi \end{cases}$, given $f(x + 2\pi) = f(x)$.	CO1	PO1	06																
	b)	If $f(x) = \begin{cases} 2 - x & \text{in } 0 < x < 4 \\ x - 6 & \text{in } 4 < x < 8 \end{cases}$ then express $f(x)$ as a Fourier series, given $f(x + 8) = f(x)$.	CO1	PO1	07																
	c)	Express y as a Fourier series up to the first harmonic:	CO1	PO1	07																
		<table border="1" style="display: inline-table;"> <tr> <td>x</td><td>0</td><td>$\pi/3$</td><td>$2\pi/3$</td><td>π</td><td>$4\pi/3$</td><td>$5\pi/3$</td><td>2π</td></tr> <tr> <td>y</td><td>1.98</td><td>1.30</td><td>1.05</td><td>1.30</td><td>-0.88</td><td>-0.25</td><td>1.98</td></tr> </table>	x	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π	y	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98			
x	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π														
y	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98														

UNIT - 5					
7	a)	Derive the finite difference formula to solve the one-dimensional wave equation $u_{tt} = c^2 u_{xx}$.	CO1	PO1	06
	b)	Find the numerical solution of the one-dimensional heat equation $u_{xx} = 2u_t$ subject to the conditions $u(0, t) = 0 = u(4, t)$ and $u(x, 0) = x(4 - x)$ by taking $h = 1, k = 1$. Find the values up to $t = 3$.	CO1	PO1	07
	c)	Solve $25u_{xx} = u_{tt}$ at the pivotal points for $0 \leq t \leq 0.4$ subject to the conditions $u(0, t) = 0, u(5, t) = 0$ and $u_t(x, 0) = 0$ and $u(x, 0) = \begin{cases} 20x & 0 \leq x \leq 1 \\ 5(5 - x) & 1 \leq x \leq 5 \end{cases}$ by taking $h = 1, k = 0.2$.	CO1	PO1	07

B.M.S.C.E. - ODD SEM 2023-24