

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Civil Engineering

Course Code: 23MA3BSMCV

Course: Mathematics for Civil Engineering- 3

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of statistical tables are permitted.

		UNIT - 1									CO	PO	Marks																							
1	a)	With usual notations, derive $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$.									CO1	PO1	06																							
	b)	The results of measurement of electric resistance R of a copper bar at various temperatures t $^{\circ}$ C are listed below: <table border="1"> <tr> <td>t</td><td>19</td><td>25</td><td>30</td><td>36</td><td>40</td><td>45</td><td>50</td></tr> <tr> <td>R</td><td>76</td><td>77</td><td>79</td><td>80</td><td>82</td><td>83</td><td>85</td></tr> </table> Find a relation $R = a + bt$ where a & b are constants.									t	19	25	30	36	40	45	50	R	76	77	79	80	82	83	85	CO1	PO1	07							
t	19	25	30	36	40	45	50																													
R	76	77	79	80	82	83	85																													
	c)	While calculating correlation co-efficient between two variables x and y from 25 pairs of observations, the following results were obtained: $n = 25$, $\sum x = 125$, $\sum x^2 = 650$, $\sum y = 100$, $\sum y^2 = 460$, $\sum xy = 508$. Later it was discovered at the time of checking that the pairs of values (8,12) and (6,8) were copied down as (6,12) and (8,6) respectively. Obtain the correct value of correlation co-efficient.									CO1	PO1	07																							
		OR																																		
2	a)	Ten students get the following percentage of marks in two subjects A and B . Find the rank correlation coefficient. <table border="1"> <tr> <td>Marks in A</td><td>78</td><td>36</td><td>98</td><td>25</td><td>75</td><td>82</td><td>90</td><td>62</td><td>65</td><td>39</td></tr> <tr> <td>Marks in B</td><td>84</td><td>51</td><td>91</td><td>60</td><td>68</td><td>62</td><td>86</td><td>58</td><td>53</td><td>47</td></tr> </table>										Marks in A	78	36	98	25	75	82	90	62	65	39	Marks in B	84	51	91	60	68	62	86	58	53	47	CO1	PO1	06
Marks in A	78	36	98	25	75	82	90	62	65	39																										
Marks in B	84	51	91	60	68	62	86	58	53	47																										
	b)	Apply least squares method to fit a second-degree polynomial of the form $y = a + bx + cx^2$ for the following data: <table border="1"> <tr> <td>x</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td></tr> <tr> <td>y</td><td>12.0</td><td>10.5</td><td>10.0</td><td>8.0</td><td>7.0</td><td>8.0</td><td>7.5</td><td>8.5</td><td>9.0</td></tr> </table>									x	0	1	2	3	4	5	6	7	8	y	12.0	10.5	10.0	8.0	7.0	8.0	7.5	8.5	9.0	CO1	PO1	07			
x	0	1	2	3	4	5	6	7	8																											
y	12.0	10.5	10.0	8.0	7.0	8.0	7.5	8.5	9.0																											
	c)	Find the coefficient of correlation and the equation of lines of regression for the data: <table border="1"> <tr> <td>x</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td></tr> <tr> <td>y</td><td>9</td><td>8</td><td>10</td><td>12</td><td>11</td><td>13</td><td>14</td></tr> </table>									x	1	2	3	4	5	6	7	y	9	8	10	12	11	13	14	CO1	PO1	07							
x	1	2	3	4	5	6	7																													
y	9	8	10	12	11	13	14																													

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - 2																									
3	a)	In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 10. Use Poisson distribution to calculate the approximate number of packets containing (i) no defective (ii) Exactly one defective (iii) At most one defective and (iv) At least one defective blades respectively in a consignment of 10,000 packets.	CO1	PO1	06																				
	b)	In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution.	CO1	PO1	07																				
	c)	Find i) marginal distributions of X and Y ii) $E(X)$ and $E(Y)$ iii) $\rho(X, Y)$ for the following distribution. Are X and Y independent random variables?	CO1	PO1	07																				
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td style="text-align: center;">\diagdown</td><td style="text-align: center;">Y</td><td style="text-align: center;">-4</td><td style="text-align: center;">2</td><td style="text-align: center;">7</td></tr> <tr> <td style="text-align: center;">\diagup</td><td style="text-align: center;">X</td><td></td><td></td><td></td></tr> <tr> <td style="text-align: center;">1</td><td style="text-align: center;">$\frac{1}{8}$</td><td style="text-align: center;">$\frac{1}{4}$</td><td style="text-align: center;">$\frac{1}{8}$</td><td></td></tr> <tr> <td style="text-align: center;">5</td><td style="text-align: center;">$\frac{1}{4}$</td><td style="text-align: center;">$\frac{1}{8}$</td><td style="text-align: center;">$\frac{1}{8}$</td><td></td></tr> </table>	\diagdown	Y	-4	2	7	\diagup	X				1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$		5	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$				
\diagdown	Y	-4	2	7																					
\diagup	X																								
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$																						
5	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$																						
UNIT - 3																									
4	a)	Find the Laplace transform of $f(t) = \sin 3t \cos 2t + e^{4t} \cos t$.	CO1	PO1	06																				
	b)	Find the Laplace transform of the square wave function of period $T = a$ defined as $f(t) = \begin{cases} 1 & 0 < t < a/2 \\ -1 & a/2 < t < a \end{cases}$.	CO1	PO1	07																				
	c)	Find the inverse Laplace transform of $F(s) = \frac{s^2+6s+9}{(s-1)(s-2)(s+4)}$.	CO1	PO1	07																				
		OR																							
5	a)	Obtain the Laplace transform of $f(t) = t \sin^2 t + \frac{\sin^2 t}{t}$.	CO1	PO1	06																				
	b)	Express the function $f(t) = \begin{cases} \sin t & 0 < t < \pi \\ \sin 2t & \pi < t < 2\pi \\ \sin 3t & t > 2\pi \end{cases}$ in terms of unit step function and hence find its Laplace transform.	CO1	PO1	07																				
	c)	Solve the differential equation $\frac{d^2x}{dt^2} + 9x = \cos(2t)$ using Laplace transform if $x(0) = 1$ and $x'(0) = 0$.	CO1	PO1	07																				
UNIT - 4																									
6	a)	Find the Fourier series expansion of $f(x) = x $ in $(-\pi, \pi)$ given $f(x) = f(x + 2\pi)$.	CO1	PO1	06																				
	b)	Find the Fourier series expansion of the function $f(x) = \begin{cases} 1 + \frac{4x}{3} & -\frac{3}{2} < x < 0 \\ 1 - \frac{4x}{3} & 0 < x < \frac{3}{2} \end{cases}$ given $f(x) = f(x + 3)$.	CO1	PO1	07																				

		c)	Obtain the constant term and the first harmonic term of the Fourier series expansion of y using the following data:	CO1	PO1	07														
			<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>y</td><td>9</td><td>18</td><td>24</td><td>28</td><td>26</td><td>20</td></tr> </table>	x	0	1	2	3	4	5	y	9	18	24	28	26	20			
x	0	1	2	3	4	5														
y	9	18	24	28	26	20														
			UNIT - 5																	
7	a)		Derive Bendale-Schmidt formula for the one-dimensional heat equation $u_t = c^2 u_{xx}$.	CO1	PO1	06														
	b)		Solve numerically the equation $u_t = u_{xx}$ subject to the conditions $u(0, t) = 0 = u(1, t); t > 0$ and $u(x, 0) = \sin \pi x, 0 \leq x \leq 1$. Carryout computations for three-time levels taking $h = \frac{1}{3}, k = \frac{1}{36}$.	CO1	PO1	07														
	c)		Evaluate the pivotal values of the equation $u_{tt} = 16u_{xx}$ taking $h = 1, k = \frac{1}{4}$ upto $t = 0.5$ subject to the boundary conditions $u(0, t) = u(5, t) = 0; u_t(x, 0) = 0$ and $u(x, 0) = x^2(5 - x)$.	CO1	PO1	07														
