

B.M.S. College of Engineering, Bengaluru-560019

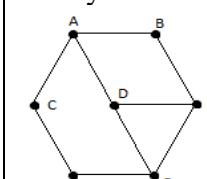
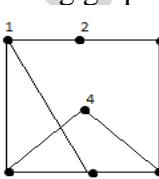
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Machine Learning

Course Code: 22MA3BSMML



Course: Mathematical Foundations for Machine Learning

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Solve the linear congruence $7x \equiv 2 \pmod{37}$.	CO1	PO1	06
	b)	Apply Chinese remainder theorem to solve the linear congruences $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{6}$, $x \equiv 4 \pmod{7}$.	CO1	PO1	07
	c)	Generate the public and private keys to encrypt certain messages using primes 3 and 11.	CO1	PO1	07
UNIT - II					
2	a)	Define complete graph, bipartite graph & complete bipartite graph with examples.	CO1	PO1	06
	b)	Verify whether the following graphs are isomorphic or not?	CO1	PO1	07
	c)	Prove that a connected graph with n vertices has at least $(n - 1)$ edges.	CO1	PO1	07
OR					
3	a)	Define Simple graph, Regular graph, and Induced subgraphs with examples.	CO1	PO1	06
	b)	Write a graph and its adjacency matrix whose incidence matrix is given below.	CO1	PO1	07
		$e_1 \ e_2 \ e_3 \ e_4 \ e_5 \ e_6$ $a \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$ $b \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$ $A(G) = c \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ $d \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$ $e \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$			
	c)	Prove that a connected graph G has a Euler circuit if and only if all vertices of G are of even degree.	CO1	PO1	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
4	a)	Let $T_1 = (V_1, E_1)$ and $T_2 = (V_2, E_2)$ be two trees with $ E_1 = 19$ and $ V_2 = 3 V_1 $, then determine $ V_1 $, $ V_2 $ and $ E_2 $.	CO1	PO1	06
	b)	Apply Kruskal's algorithm to find the minimal spanning tree of the graph given below	CO1	PO1	07
	c)	Apply Dijkstra's algorithm to find the shortest path and its weight from the vertex 1 to each of the other vertices in the directed graph given below	CO1	PO1	07
UNIT-IV					
5	a)	Find the coefficient of (i). x^9y^3 in the expansion of $(2x - 3y)^{12}$, (ii). xyz^2 in the expansion of $(2x - y - z)^4$.	CO1	PO1	06
	b)	In a survey of 200 musicians, it was found that 40 wore gloves on the left hand and 39 wore gloves on the right hand. If 160 wore no gloves at all, how many wore a glove on only the right hand? Only the left hand? On both hands?	CO1	PO1	07
	c)	Define Catalan numbers and write first 6 Catalan numbers. Using the moves $R: (x, y) \rightarrow (x + 1, y)$ & $U: (x, y) \rightarrow (x, y + 1)$, find in how many ways one can go from (i). $(0, 0)$ to $(6, 6)$ and not rise above the line $y = x$? (ii). $(2, 1)$ to $(7, 6)$ and not rise above the line $y = x - 1$?	CO1	PO1	07
UNIT - V					
6	a)	Apply mathematical induction to prove that $(n^3 - n)$ is divisible by 3 $\forall n \in \mathbb{Z}^+$.	CO1	PO1	06
	b)	Solve the recurrence relation $a_{n+1} = 4a_n$, $a_0 = 3$ for $n \geq 0$.	CO1	PO1	07
	c)	A bank pays a certain percentage of annual interest on deposits, compounding the interest once in 3 months. If a deposit doubles in 6 years and 6 months, what is the annual percentage of interest paid by the bank?	CO1	PO1	07
OR					
7	a)	Apply mathematical induction to show that $2^n > n^2 \forall n > 4 \in \mathbb{Z}^+$.	CO1	PO1	06
	b)	Solve the recurrence relation $a_n + a_{n-1} - 6a_{n-2} = 0$, $a_0 = -1$, $a_1 = 8$ for $n \geq 2$.	CO1	PO1	07
	c)	By the method of generating functions, find the solution of the recurrence relation $a_{n+2} - 3a_{n+1} + 2a_n = 0$, $a_0 = 1$, $a_1 = 6$ for $n \geq 0$	CO1	PO1	07
