

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Machine Learning

Duration: 3 hrs.

Course Code: 23MA3BSMML

Max Marks: 100

Course: Mathematical Foundation for Machine Learning - 1

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Determine whether the linear transformation $T: \mathbb{R}^4 \rightarrow \mathbb{R}^3$ defined by $T(x, y, z, t) = (x - y + z + t, x + 2z + t, x + y + 3z - 3t)$ is one-one or onto or bijective. If not one-one then determine the basis of the subspace which are mapped to the zero vector.	COI	POI	06
	b)	Consider the matrix $A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -1 & 0 \\ 1 & 4 & -2 \end{bmatrix}$ which defines a linear operator on \mathbb{R}^2 . Find the matrix of the linear transformation relative to the basis $S = \{u_1, u_2, u_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$.	COI	POI	07
	c)	Apply the method of cofactors to obtain the determinant of $A = \begin{bmatrix} -2 & 2 & 0 & 1 \\ 2 & -1 & 3 & 0 \\ -1 & 0 & 2 & -4 \\ 0 & -3 & 5 & 3 \end{bmatrix}$. Also determine the number of multiplications and additions used to obtain the same.	COI	POI	07
UNIT - 2					
2	a)	The linear transformation $G: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is defined by $G(x, y, z) = (x + y + 3z, x + 5y + z, 3x + y + z)$. Find G^2 , G^3 and G^{-2} .	COI	POI	06
	b)	Determine whether or not the linear maps F , G and H are linearly independent where $F, G, H: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ are defined by $F(a, b, c) = (a + b, a + b + c)$, $G(a, b, c) = (2a + c, a - b)$ and $H(a, b, c) = (2b + c, a + c)$.	COI	POI	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Derive the linear transformation on \mathbb{R}^2 that defines rotation of the vector by an angle θ in the anti-clockwise direction. Construct a single matrix that defines a dilation of factor 2, then a shear of factor 3 in the x direction, then a rotation through an angle $\frac{\pi}{2}$ counterclockwise.	COI	POI	07
		UNIT – 3			
3	a)	Consider $f(t) = t+2$, $g(t) = 3t-2$ and $h(t) = t^2 - 2t - 3$ in $P(t)$ with the inner product defined as $\langle p, q \rangle = \int_0^1 p(t)q(t)dt$. Find $\langle f, h \rangle$, $\langle g, h \rangle$ and the angle between $f(t)$ and $g(t)$.	COI	POI	06
	b)	Verify the Cauchy-Schwartz inequality $\langle u, v \rangle^2 \leq \langle u, u \rangle \langle v, v \rangle$ if $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}$ are vectors in $M_{2 \times 2}$ with the inner product $\langle A, B \rangle = \text{Tr}(B^T A)$.	COI	POI	07
	c)	Show that the ordered set $S = \{u_1, u_2, u_3, u_4\}$ where $u_1 = (1, 1, 1, 1)$, $u_2 = (1, 1, -1, -1)$, $u_3 = (1, -1, 1, -1)$ and $u_4 = (1, -1, -1, 1)$ is an orthogonal basis of \mathbb{R}^4 . Hence express $v = (0, 2, 0, 6)$ as a linear combination of the vectors of S .	COI	POI	07
		OR			
4	a)	If $\langle \cdot, \cdot \rangle$ is an inner product on a vector space over a real field, then expand $\langle 3u - 2v, 2u + w \rangle$. Prove that the expansion is true for $u = (1, 3, -4, 2)$, $v = (4, -2, 2, 1)$ and $w = (5, -1, -2, 6)$ in \mathbb{R}^4 when $\langle \cdot, \cdot \rangle$ is the usual dot product.	COI	POI	06
	b)	Write a Pseudo code (or a python code) to determine the condition number of the matrix with respect to the L_2 -norm. Calculate the condition number of the coefficient matrix of the system $\begin{bmatrix} 1 & 10^4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ with respect to L_2 -norm and hence conclude that the problem is ill-conditioned.	CO2	PO5	07
	c)	Prove that the mapping $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$ is an inner product space if $\langle u, v \rangle = u_1v_1 - 2u_1v_2 - 2u_2v_1 + 5u_2v_2$ where $u = (u_1, u_2)$ and $v = (v_1, v_2)$. Hence find the norm of $(2, -1)$ with respect to norm induced by the inner product.	COI	POI	07
		UNIT – 4			
5	a)	Let W be a subspace of \mathbb{R}^5 spanned by $u = (1, 2, 3, -1, 2)$ and $v = (2, 4, 7, 2, -1)$. Find a basis of W^\perp .	COI	POI	06

	b)	Obtain the QR decomposition of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 2 & 0 \\ -1 & -2 & 2 \end{bmatrix}$.	CO1	PO1	07												
	c)	A steel producer gathers the following data: <table border="1"> <tr> <td>Year</td> <td>1997</td> <td>1998</td> <td>1999</td> <td>2000</td> <td>2001</td> </tr> <tr> <td>Annual Sales (million \$)</td> <td>1.2</td> <td>2.3</td> <td>3.2</td> <td>3.6</td> <td>3.8</td> </tr> </table> <p>Represent the years 1997,...2001 as 0, 1, 2, 3, 4 respectively and let x denote the year. Let y denote the annual sales (in millions of dollars).</p> <p>(i) Write a Pseudo code to determine the least squares line of the form $y = a + bx$.</p> <p>(ii) Determine the least squares line of the form $y = a + bx$.</p>	Year	1997	1998	1999	2000	2001	Annual Sales (million \$)	1.2	2.3	3.2	3.6	3.8	CO2	PO5	07
Year	1997	1998	1999	2000	2001												
Annual Sales (million \$)	1.2	2.3	3.2	3.6	3.8												
UNIT – 5																	
6	a)	Find the characteristic and minimal polynomial of the matrix $\begin{bmatrix} 3 & 1 & -1 \\ 2 & 4 & -2 \\ -1 & -1 & 3 \end{bmatrix}$.	CO1	PO1	06												
	b)	Write a pseudo code to find the spectral norm of a matrix. Apply the same to find the spectral norm of $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & -1 \end{bmatrix}$.	CO2	PO5	07												
	c)	Determine the orthogonal matrix that diagonalizes the matrix $A = \begin{bmatrix} 2 & 2 & 4 \\ 2 & 5 & 8 \\ 4 & 8 & 17 \end{bmatrix}$.	CO1	PO1	07												
OR																	
7	a)	Obtain the eigen space of the linear transformation $T : P_2(t) \rightarrow P_2(t)$ given by $T(at^2 + bt + c) = (3a + 2b + c)t^2 + (a + 4b + c)t + a + 2b + 3c$.	CO1	PO1	06												
	b)	Determine A^5 if $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ using diagonal decomposition of matrices.	CO1	PO1	07												
	c)	The eigenvalues of $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ are 1 and 4. Determine the eigenvectors. Write a pseudo code to obtain orthonormal eigenvectors and implement the same to obtain orthonormal eigenvectors.	CO2	PO5	07												
