

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: III

Branch: AI and ML

Duration: 3 hrs.

Course Code: 23MA3BSMML

Max Marks: 100

Course: Mathematical Foundations for Machine Learning-1

Instructions: 1. All questions have internal choices.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Prove that the linear transformation $T:V \rightarrow W$ is one-to-one if and only if the equation $Tv=0$ has only a trivial solution. Give an example of one-to-one and an example of not one-to-one linear transformations.	1	1	6
		b)	Find the determinant of the matrix $A = \begin{bmatrix} -1 & 2 & 1 & -6 \\ 7 & -2 & -4 & -2 \\ -5 & 3 & 3 & -10 \\ 4 & -5 & -7 & 6 \end{bmatrix}$ by using elementary row transformations. Hence write the number of additions and multiplications you have used to get the result.	2	1	7
		c)	Let $G: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the linear transformation defined by $G(x, y, z) = (4x + y + z, x - 2y, 2x - y - 3z)$. Is G invertible? If yes, then find G^{-1} .	1	1	7
		OR				
	2.	a)	Check whether the linear transformation $T: \mathbb{R}^5 \rightarrow \mathbb{R}^4$ where $T = \begin{bmatrix} 2 & -1 & 1 & -6 & 8 \\ 1 & -2 & -4 & 3 & -2 \\ -7 & 8 & 10 & 3 & -10 \\ 4 & -5 & -7 & 0 & 4 \end{bmatrix}$ is one-one and on to. Also, if not one-one find the non-zero vector whose image is zero vector.	1	1	6
		b)	Derive the number of additions and multiplications required in finding the determinant of the $n \times n$ matrix using cofactors method. Also, write a pseudocode to give this count for $n = 3, 4, 5$ and 6 .	2	1	7
		c)	Let $F(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)$ be a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 and let the basis for \mathbb{R}^3 and \mathbb{R}^2 be $S = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ and $S' = \{(1, 3), (2, 5)\}$ respectively. Verify $[F]_{S,S'} [v]_S = [F(v)]_{S'}$ for $v = (1, -3, 2)$ in \mathbb{R}^3 .	1	1	7

UNIT - 2					
3.	a)	Determine whether the linear maps $F: \mathbb{R}^3 \rightarrow \mathbb{R}^2$, $G: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ and $H: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ defined by $F(x, y, z) = (2y + z, x + z)$, $G(x, y, z) = (2x + z, x - y)$ and $H(x, y, z) = (x + y - z, x + y + z)$ respectively are linearly independent or not.	1	1	6
	b)	Let $F: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ and $G: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ defined by $F(x, y, z) = (2x, y + z, y)$ and $G(x, y, z) = (x + y, x - z)$. Determine the compositions $G \circ F$, $F \circ G$, F^2 and G^2 if they exists.	1	1	7
	c)	Determine the image of the triangle with vertices $(1, 2)$, $(2, 8)$ and $(3, 2)$ when transformed by the affine transformation $T(x, y) = (x + 4, y + 2)$. Plot the region and its image.	1	1	7
	OR				
4.	a)	Let $G: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a linear transformation defined by $G(x, y, z) = (2x - 3y, x - 2y + z, 3y - 5z)$. Find G^2 , G^3 , $G^2(2, -3, 1)$ and $G^3(2, -3, 1)$.	1	1	6
	b)	Determine the matrix that describes a reflection about x -axis, followed by rotation through $\frac{\pi}{3}$, followed by a dilation of factor 3. Find the image of the point $(4, 1)$ under this sequence of mappings.	1	1	7
	c)	Find the image of the triangle having vertices $A(1, -3, 1)$, $B(2, -3, 1)$ and $C(5, 6, 1)$ in homogeneous coordinates under the sequence of transformations $T = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$ followed by $R = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ followed by $S = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Sketch the original and the final triangle.	1	1	7
	UNIT - 3				
5.	a)	Design and implement a pseudocode to find the condition number of the matrix $A = \begin{bmatrix} 5 & 7.5 & -1.75 \\ 2.1 & -3.25 & 6.125 \end{bmatrix}$ using Frobenius norm.	2	1	6
	b)	Prove or disprove that vector space \mathbb{R}^2 is an inner product space with respect to the function $\langle u, v \rangle = u_1v_1 + 3u_2v_2 - u_1v_2 + u_2v_1$, for $u, v \in \mathbb{R}^2$. Is this a normed vector space?	1	1	7
	c)	Show that $S = \{u_1, u_2, u_3, u_4\}$ is an orthogonal and a basis of \mathbb{R}^4 , where $u_1 = (1, 2, 1, -2)$, $u_2 = (2, -1, 2, 1)$, $u_3 = (0, 3, 0, 3)$ and $u_4 = (2, 0, -2, 0)$. Also express $v = (1, 3, -5, 6)$ as a linear combination of the vectors of S and hence write its coordinate vector.	1	1	7
	OR				

6.	a)	<p>Find the value of α such that the matrices $A = \begin{bmatrix} \alpha & 8 & -7 \\ 6 & 5\alpha & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6\alpha \end{bmatrix}$ are orthogonal with respect to an inner product $\langle A, B \rangle = \text{Tr}(B^T A)$. Hence find $\ A\$ and $\ B\$.</p>	1	1	6										
	b)	<p>If u and v are any two vectors in an inner product space V then prove the following:</p> <p>(i) if $\ u\ = \ v\$ then prove that $\langle u+v, u-v \rangle = 0$,</p> <p>(ii) $u = v$ if and only if $\langle u, w \rangle = \langle v, w \rangle, w \in V$.</p>	1	1	7										
	c)	<p>For the functions $f(t) = t^2 - 1$ and $g(t) = 3t$ in polynomial space $P(t)$ with an inner product $\langle f, g \rangle = \int_{-1}^1 f(t)g(t)dt$, verify the following:</p> <p>i) $\ f + g\ \leq \ f\ + \ g\$</p> <p>ii) $\ f + g\ ^2 + \ f - g\ ^2 = 2(\ f\ ^2 + \ g\ ^2)$.</p>	1	1	7										
UNIT - 4															
7.	a)	<p>Let $u, v \in \mathbb{R}^n$ define a function $f(u, v) = \sum_{i=1}^n u_i - v_i$. Prove or disprove whether $f(u, v)$ satisfies all the properties of a distance(metric) function.</p>	1	1	6										
	b)	<p>Let $P_2(t)$ be the vector space of polynomials of degree ≤ 2 with $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Find a basis of the subspace W orthogonal to $h(t) = 2t + 1$.</p>	1	1	7										
	c)	<p>Find an orthogonal matrix P whose rows form an orthonormal basis of \mathbb{R}^3 if the first row of P is $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$.</p>	1	1	7										
OR															
8	a)	<p>Let $v = (1, 2, 3, 4, 6) \in \mathbb{R}^5$ and W be the subspace of \mathbb{R}^5 spanned by the vectors $(1, 2, 1, 2, 1)$ and $(1, -1, 2, -1, 1)$. Determine the projection of the vector v along W.</p>	1	1	6										
	b)	<p>Construct an orthogonal basis and hence an orthonormal basis of the subspace W spanned by the vectors $v_1 = (1, 1, 1, 1)$, $v_2 = (1, 2, 4, 5)$ and $v_3 = (1, -3, -4, -2)$ of \mathbb{R}^4.</p>	1	1	7										
	c)	<p>Design and implement pseudocode to find the linear relationship of the form $y = ax + b$ using the least squares method for the following data</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>2.5</td><td>2.7</td><td>3.1</td><td>3.3</td></tr> <tr> <td>y</td><td>1.2</td><td>2.3</td><td>3.2</td><td>3.6</td></tr> </table> <p>Hence determine the value of y when $x = 3.8$.</p>	x	2.5	2.7	3.1	3.3	y	1.2	2.3	3.2	3.6	2	1	7
x	2.5	2.7	3.1	3.3											
y	1.2	2.3	3.2	3.6											

UNIT - V					
9.	a)	Design and implement the algorithm to find the spectral norm of a matrix $A = \begin{bmatrix} 1 & 7 \\ -2 & 4 \\ 8 & 6 \end{bmatrix}$.	2	1	6
	b)	Let $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a linear transformation defined by $T(x, y, z) = (3x+2y+z, x+4y+z, x+2y+3z)$. Find the eigenspace of the T .	1	1	7
	c)	Check whether the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ is diagonalizable. If so, find the modal matrix which diagonalizes A .	1	1	7
OR					
10.	a)	Compute A^9 by eigenvalue decomposition if $A = \begin{bmatrix} 3 & 1 \\ 1 & -3 \end{bmatrix}$.	1	1	6
	b)	Given $A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$, orthogonally diagonalize $A^T A$.	1	1	7
	c)	Find the characteristic and minimal polynomial of the matrix $A = \begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix}$.	1	1	7

B.M.S.C.E. - ODD SEMESTER