

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: AI and ML

Course Code: 23MA3BSMML

Course: Mathematical Foundation for Machine Learning - 1

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. All questions have internal choices.

2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Find the matrix of linear map T on R^3 defined by $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+2y-3z \\ 4x-5y-6z \\ 7x+8y+9z \end{bmatrix}$ with respect to basis $S = \{(1,1,1), (0,1,1), (1,2,3)\}$.	1	1	6
	b)	Check whether the linear map $T: R^4 \rightarrow R^3$ where $T = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$ is one-one and onto. Also, if not one-one then find the non-zero vector whose image is a zero vector.	1	1	7
	c)	Apply Gaussian elimination approach to find the determinant of the matrix $A = \begin{bmatrix} -2 & 2 & 0 & 1 \\ 2 & -1 & 3 & 0 \\ -1 & 0 & 2 & -4 \\ 0 & -3 & 5 & 3 \end{bmatrix}$. Hence write the number of additions and multiplications you have used to get the result.	1	1	7
OR					
2	a)	Given that $G: R^2 \rightarrow R^2$ and $S = \{u_1, u_2\} = \{(1, 3), (2, 5)\}$ is the basis of R^2 , $G(x, y) = (2x-7y, 4x+3y)$ and $v = (4, -3)$ in R^2 . Verify that $[G]_s \cdot [v]_s = [G(v)]_s$.	1	1	6
	b)	Let $G: R^3 \rightarrow R^3$ defined by $G(x, y, z) = (2x, 4x-y, 2x+3y-z)$. Is G singular or non-singular? Is G invertible? Justify. If G is invertible then find G^{-1} .	1	1	7
	c)	Derive the recursive formula for number of additions and multiplication in finding determinant of a matrix using cofactor expansion method. Also write the pseudocode to count the number of operations.	1	1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Determine whether or not the set of linear maps $\{F, G, H\}$ from $R^3 \rightarrow R^2$ defined by $F(a, b, c) = (a+b+c, a+b)$, $G(a, b, c) = (2a+c, a+b)$, and $H(a, b, c) = (a-b, 0)$ are linearly independent.	1	1	6
	b)	Discuss the following maps on R^2 graphically with matrix representation <ol style="list-style-type: none"> i. Reflection through x-axis, ii. Rotation, iii. Horizontal shear. 	1	1	7
	c)	Determine the image of the triangle with vertices $(1, 2)$, $(2, 8)$ and $(3, 2)$ when transformed by the affine transformation $T(x, y) = (x+4, y+2)$. Plot the region and its image.	1	1	7
OR					
4	a)	Derive the matrix of the linear transformation $T: R^2 \rightarrow R^2$, which rotates a vector $v \in R^2$ by an angle θ in an anti-clockwise direction. Find if there exist: <ol style="list-style-type: none"> i. a preimage of $(1, -3)$. ii. an image of $(3, -1)$ when $\theta = \frac{\pi}{3}$. 	1	1	6
	b)	Let the linear maps $F: R^3 \rightarrow R^2$ and $G: R^2 \rightarrow R^2$ be defined by $F(x, y, z) = (2x, y+z)$ and $G(x, y) = (y, x)$. Check whether $G \circ F$, $F \circ G$, F^2 and G^{-2} exists, if so find the composite linear maps.	1	1	7
	c)	Find the image of the triangle having vertices $A(1, 6, 1)$, $B(3, 0, 1)$ and $C(4, 16, 1)$ in homogeneous coordinates under the sequence of transformations T followed by R , followed by S when $T = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}, R = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } S = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Sketch the original and the final triangle.	1	1	7
UNIT - III					
5	a)	If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 5 & 5 \end{bmatrix}$ in a vector space of matrices $M_{2 \times 2}$ with an inner product $\langle A, B \rangle = \text{tr}(B^T A)$ then find $\langle A, B \rangle$, $\ A\ $ and $\ B\ $.	1	1	6
	b)	If $u = (1, 3, -4, 2)$, $v = (4, -2, 2, 1)$ and $w = (5, -1, -2, 6)$ are in R^4 then prove that $\langle 3u - 2v, w \rangle = 3\langle u, w \rangle - 2\langle v, w \rangle$, where $\langle \cdot, \cdot \rangle$ is a standard inner product.	1	1	7

	c)	If u and v are any two vectors in an inner product space V then prove the following: (i) if $\ u\ = \ v\ $ then prove that $\langle u+v, u-v \rangle = 0$, (ii) $u = v$ if and only if $\langle u, w \rangle = \langle v, w \rangle, w \in V$.	1	1	7														
		OR																	
6	a)	Design and implement the pseudocode to find the Frobenius norm for the matrix $A = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{bmatrix}$. Write all computational steps.	1	1	6														
	b)	Given $f(t) = t+2$, $g(t) = 3t-2$ and $h(t) = t^2 - 2t - 3$ in $P(t)$ with the inner product defined as $\langle p, q \rangle = \int_0^1 p(t)q(t)dt$. Find $\langle f, g \rangle$, $\langle f, h \rangle$, $\ f\ $ and $\ g\ $.	1	1	7														
	c)	Prove that vector space $V = \mathbb{R}^3$ is an inner product space with respect to inner product $\langle u, v \rangle = u_1v_1 - u_2v_1 + u_1v_2 + 4u_2v_2$. Is this a normed vector space?	1	1	7														
		UNIT - IV																	
7	a)	Show that (\mathbb{R}, d) forms a metric space when $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is defined as $d(x, y) = x - y $, $x, y \in \mathbb{R}$.	1	1	6														
	b)	Find the projection of the vector $v = (1, 2, 3, 4, 6)$ along $W = \text{span}\{(1, 2, 1, 2, 1), (1, -1, 2, -1, 1)\}$ in \mathbb{R}^5 .	1	1	7														
	c)	Find an orthogonal basis and hence an orthonormal basis of the subspace W spanned by the following vectors $v_1 = (1, 1, 1, 1)$, $v_2 = (1, -1, 2, 2)$ and $v_3 = (1, 2, -3, -4)$ of \mathbb{R}^4 .	1	1	7														
		OR																	
8	a)	Let W be a subspace of \mathbb{R}^5 spanned by $u = (1, 2, 3, -1, 2)$ and $v = (2, 4, 7, 2, -1)$. Find a basis of W^\perp .	1	1	6														
	b)	Find an orthogonal matrix P whose first row is $u_1 = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$.	1	1	7														
	c)	A sales organization obtains the following data relating the number of salespersons to annual sales. <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Number of salespersons (x)</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10</td> </tr> <tr> <td>Annual Sales (millions of dollars)</td> <td>2.3</td> <td>3.2</td> <td>4.1</td> <td>5.0</td> <td>6.1</td> <td>7.2</td> </tr> </table> <p>Let x denote the number of salespersons and let (y) denote the annual sales (in millions of dollars). Find the least squares line of the form $y = a + bx$ and hence estimate the annual sales when there are 13 salespersons.</p>	Number of salespersons (x)	5	6	7	8	9	10	Annual Sales (millions of dollars)	2.3	3.2	4.1	5.0	6.1	7.2	1	1	7
Number of salespersons (x)	5	6	7	8	9	10													
Annual Sales (millions of dollars)	2.3	3.2	4.1	5.0	6.1	7.2													

UNIT - V					
9	a)	Find the eigen spaces of the linear transformation $T : R^3 \rightarrow R^3$ defined by $T(x, y, z) = (3x+2y+z, x+4y+z, x+2y+3z)$.	1	1	6
	b)	Find the characteristic and minimal polynomial of the matrix $\begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix}$.	1	1	7
	c)	Find the eigenvalue decomposition of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.	1	1	7
OR					
10	a)	Find the minimal polynomial of the matrix $A = \begin{bmatrix} 4 & -2 & 2 \\ 6 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$.	1	1	6
	b)	Design and implement the pseudocode to find the spectral radius of the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & -1 \end{bmatrix}$.	1	1	7
	c)	Orthogonally diagonalize the matrix $A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$.	1	1	7
