

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: III

Branch: Machine Learning

Duration: 3 hrs.

Course Code: 23MA3BSMML

Max Marks: 100

Course: Mathematical Foundation for Machine Learning - 1

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	<p>Check whether the linear transformation $T: \mathbb{R}^5 \rightarrow \mathbb{R}^4$ defined by $T = \begin{bmatrix} 2 & -1 & 1 & -6 & 8 \\ 1 & -2 & -4 & 3 & -2 \\ -7 & 8 & 10 & 3 & -10 \\ 4 & -5 & -7 & 0 & 4 \end{bmatrix}$ is one-one and onto. If not one-one, find the non-zero vector whose image is a zero vector.</p>	<i>CO1</i>	<i>PO1</i>	06
	b)	<p>Let $G: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be linear transformation defined by $G(x, y, z) = (2x, 4x - y, 2x + 3y - z)$ (i) verify whether G is non-singular or not. (ii) Find G^{-1} if it exists. Also find a preimage of (4, 7, 7).</p>	<i>CO1</i>	<i>PO1</i>	07
	c)	<p>Apply Gaussian elimination approach to find the determinant of the matrix $A = \begin{bmatrix} 4 & -1 & 2 & 1 & 0 \\ 1 & 2 & 1 & 5 & 4 \\ 2 & -1 & 3 & 1 & 3 \\ 3 & 1 & 6 & 3 & 1 \\ 7 & 2 & 8 & 9 & 3 \end{bmatrix}$. Hence write the number of additions and multiplications you have used to get the result.</p>	<i>CO1</i>	<i>PO1</i>	07
UNIT - 2					
2	a)	<p>Let $G: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a linear transformation defined by $G(x, y, z) = (2x + y, x - y + z, 3y - z)$. (i) Find G^2, G^3. (ii) Also find $G^2(2,1,3)$ and $G^{-2}(2,1,3)$.</p>	<i>CO1</i>	<i>PO1</i>	06
	b)	<p>Find the image of the triangle having vertices $A(1,3,1)$, $B(5,3,1)$ and $C(4,6,1)$ in homogeneous coordinates under the sequence of transformations T followed by R followed by S where $T = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$, $R = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $S = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix}$. Sketch the original and the final triangle.</p>	<i>CO1</i>	<i>PO1</i>	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Given $G: R^2 \rightarrow R^2$ and $S = \{u_1, u_2\} = \{(1, 3), (2, 5)\}$ is the basis of R^2 and $G(x, y) = (2x - 7y, 4x + 3y)$, (i) Find the matrix of G_s , relative to S. (ii) Verify $[G]_s \cdot [v]_s = [G(v)]_s$ for the vector $v = (4, -3)$ in R^2 .	CO1	PO1	07														
		UNIT - 3																	
3	a)	Design and implement a pseudo code to find the condition number of the matrix $B = \begin{bmatrix} 10 & 2 \\ 7 & -5 \end{bmatrix}$ using Frobenious norm.	CO2	PO5	06														
	b)	Prove that vector space $V = \mathbb{R}^3$ be an inner product space vector space with respect to inner product $\langle u, v \rangle = u_1v_1 - u_2v_1 - u_1v_2 + 4u_2v_2$. Is this a normed vector space?	CO1	PO1	07														
	c)	Show that $S = \{u_1, u_2, u_3, u_4\}$, where $u_1 = (1, 1, 0, -1)$, $u_2 = (1, 2, 1, 3)$, $u_3 = (1, 1, -9, 2)$, $u_4 = (16, -13, 1, 3)$ is an orthogonal basis of \mathbb{R}^4 . Find the coordinates of the arbitrary vector $v = (a, b, c, d)$ in \mathbb{R}^4 relative to the basis S .	CO1	PO1	07														
		OR																	
4	a)	Find the value of α such that the matrices $A = \begin{bmatrix} \alpha & 8 & -7 \\ 6 & 5\alpha & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6\alpha \end{bmatrix}$ are orthogonal with respect to an inner product $\langle A, B \rangle = \text{Tr}(B^T A)$. Hence find $\ A\ $ and $\ B\ $.	CO1	PO1	06														
	b)	Let u and v are any two vectors in an inner product space V . (i) If $\ u\ = \ v\ $ then prove that $\langle u + v, u - v \rangle = 0$, (ii) Expand $\langle -5u + 3v, -4u + 2v \rangle$.	CO1	PO1	07														
	c)	For the functions $f(t) = t^2 - 1$ and $g(t) = 3t$ in polynomial space $P(t)$ verify the following: (i) $\ f + g\ \leq \ f\ + \ g\ $ (ii) $\ f + g\ ^2 + \ f - g\ ^2 = 2(\ f\ ^2 + \ g\ ^2)$, given $\langle f, g \rangle = \int_0^1 fg dt$.	CO1	PO1	07														
		UNIT - 4																	
5	a)	Let $d(u, v)$ be the metric in the vector space R^n . Verify whether $d^*(u, v) = \frac{d(u, v)}{1+d(u, v)}$ is a metric on R^n .	CO1	PO1	06														
	b)	Construct an orthogonal basis and hence an orthonormal basis of the subspace W spanned by the vectors $v_1 = (1, 1, 1, 1)$, $v_2 = (1, 2, 4, 5)$ and $v_3 = (1, -3, -4, -2)$ of \mathbb{R}^4 using Gram-Schmidt orthogonalization process.	CO1	PO1	07														
	c)	A sales organization obtains the following data relating the number of salespersons to annual sales. <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>x: Number of salespersons</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10</td> </tr> <tr> <td>y: Annual Sales (million dollars)</td> <td>2.3</td> <td>3.2</td> <td>4.1</td> <td>5.0</td> <td>6.1</td> <td>7.2</td> </tr> </table> Find the least squares line of the form $y = a + bx$ and hence estimate the annual sales when there are 14 salespersons.	x : Number of salespersons	5	6	7	8	9	10	y : Annual Sales (million dollars)	2.3	3.2	4.1	5.0	6.1	7.2	CO1	PO1	07
x : Number of salespersons	5	6	7	8	9	10													
y : Annual Sales (million dollars)	2.3	3.2	4.1	5.0	6.1	7.2													

UNIT - 5					
6	a)	Design and implement the algorithm to find the spectral norm of a matrix $A = \begin{bmatrix} 2 & -5 \\ -2 & 3 \\ 1 & 7 \end{bmatrix}$.	<i>CO1</i>	<i>PO1</i>	06
	b)	Find the eigenspaces of the linear transformation $T: P_2(t) \rightarrow P_2(t)$ defined by $T(f(t)) = (a + 3b + 3c)t^2 + (-3a - 5b - 3c)t + (3a + 3b + c)$, where $f(t) = at^2 + bt + c$	<i>CO2</i>	<i>PO5</i>	07
	c)	Check whether the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ is diagonalizable. If so, find the modal matrix which diagonalize A .	<i>CO1</i>	<i>PO1</i>	07
OR					
7	a)	Given $A = \begin{bmatrix} 3 & 1 \\ 1 & -3 \end{bmatrix}$ compute A^9 without using the conventional matrix multiplication. Show all the necessary computations.	<i>CO1</i>	<i>PO1</i>	06
	b)	Given $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, orthogonally diagonalize $A^T A$.	<i>CO1</i>	<i>PO1</i>	07
	c)	Find the characteristic and minimal polynomial of the matrix $A = \begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix}$.	<i>CO1</i>	<i>PO1</i>	07
