

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: AI and ML

Course Code: 23MA3BSMML

Course: Mathematical Foundation for Machine Learning - 1

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. All questions have internal choices.

2. Missing data, if any, may be suitably assumed.

UNIT – 1			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Find the rank and nullity of the linear map $L: \mathbb{R}^4 \rightarrow \mathbb{R}^3$ defined by $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & 2 \\ 3 & 8 & 12 & -3 \end{bmatrix}$. Hence determine whether the mapping is i) one-one ii) onto. Justify for each case.	1	1	6
	2	b)	Let the matrix of $L: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ with respect to the bases $S = \{v_1, v_2, v_3\}$ and $T = \{w_1, w_2\}$ be $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 1 \end{bmatrix}$ where $v_1 = (-1, 1, 0)$, $v_2 = (0, 1, 1)$, $v_3 = (1, 0, -1)$, $w_1 = (1, 2)$ and $w_2 = (1, -1)$. Compute coordinate vectors $[L(v_1)]_T$, $[L(v_2)]_T$, $[L(v_3)]_T$ and images $L(v_1)$, $L(v_2)$ and $L(v_3)$.	1	1	7
	2	c)	Design and implement the pseudocode to determine the number of floating-point operations (multiplications, additions) to compute the determinant of a 5×5 by the method of cofactors.	2	1	7
OR						
2	a)	Apply elementary row transformation to compute the determinant of the matrix $A = \begin{bmatrix} 2 & 2 & 0 & 1 \\ 2 & -1 & 3 & 0 \\ -1 & 0 & 2 & -4 \\ 1 & -3 & 5 & 3 \end{bmatrix}$.	1	1	6	
	b)	Consider the matrix $A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ which defines a linear operator on \mathbb{R}^3 . Find the matrix of the linear transformation relative to the basis $S = \{u_1, u_2, u_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$.	1	1	7	

	c)	<p>Is the linear operator G on \mathbb{R}^4 defined by $G \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} -x + y + 3z + t \\ x + 2y + 3z + 4t \\ 3y + 6z + 5t \\ -2x - y - 3t \end{bmatrix}$ non-singular? Is it invertible? If not, find the basis of the subspace whose image is zero.</p>	1	1	7
		UNIT – 2			
3	a)	<p>Find G^2 and G^3 if the linear transformation $G: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is defined by $G(x, y, z) = (2x - y + 3z, 2x + 3y + z, 3x + y + z)$.</p>	1	1	6
	b)	<p>Determine whether the linear transformations F, G and H from \mathbb{R}^3 to \mathbb{R}^2 are linearly independent or not when they are defined by $F(a, b, c) = (2a + b, 3a + b + c)$, $G(a, b, c) = (3a + b - c, 2a - b)$ and $H(a, b, c) = (5a + 2b - c, 5a + c)$.</p>	1	1	7
	c)	<p>Find the image of the triangle having vertices $A(1, 2, 1)$, $B(2, 5, 1)$ and $C(3, 2, 1)$ in the homogeneous coordinates under the sequence of transformations R, followed by S, followed by T where $R = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $S = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $T = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$. Plot the original and the transformed triangle.</p>	1	1	7
		OR			
4	a)	<p>If the linear maps $F: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ and $G: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ are defined by $F(x, y, z) = (x + y + z, x - y + z)$ and $G(x, y) = (x + y, x - y, 2x + 3y)$, then find $F \circ G$ and $G \circ F$, if they exist.</p>	1	1	6
	b)	<p>Find a single matrix that defines a rotation of the plane through an angle $\frac{\pi}{4}$ about the origin, while at the same time moves the points to twice their distance from the origin. Hence find the image of the triangle $(0, 0)$, $(1, 0)$ and $(1, 1)$. Plot the original image and the transformed image.</p>	1	1	7
	c)	<p>Determine the image of the triangle with vertices $(1, 2), (2, 8), (3, 2)$ when transformed by the affine transformation $T(x, y) = (x + 4, y + 2)$. Plot the region and its image.</p>	1	1	7
		UNIT – 3			
5	a)	<p>If the inner product on the vector space \mathbb{R}^3 over a real field is given by $\langle u, v \rangle = v^T A u$ where $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 3 & 1 \\ -2 & 1 & 2 \end{bmatrix}$ then find the angle between $u = (1, 3, -4)$ and $v = (4, -2, 2)$.</p>	1	1	6

	b)	Verify the parallelogram law $\ u+v\ ^2 + \ u-v\ ^2 = 2(\ u\ ^2 + \ v\ ^2)$ if $A = \begin{bmatrix} 2 & 2 \\ -1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}$ in an inner product space of matrices $M_{2 \times 2}$ with the inner product $\langle A, B \rangle = \text{Tr}(B^T A)$.	1	1	7												
	c)	Show that the ordered set $S = \{u_1, u_2, u_3, u_4\}$ where $u_1 = (1, 1, 1, 1)$, $u_2 = (1, 1, -2, 0)$, $u_3 = (-2, 0, -1, 3)$ and $u_4 = (-5, 7, 1, -3)$ is an orthogonal basis of \mathbb{R}^4 . Hence express $v = (1, 2, -1, 3)$ as a linear combination of the vectors of S .	1	1	7												
OR																	
6	a)	Consider $f(t) = t + 2$, $g(t) = 3t - 2$ and $h(t) = 2t - 3$ in $P(t)$ with the inner product defined as $\langle p, q \rangle = \int_0^1 p(t)q(t)dt$. Find $\langle f, h \rangle$, $\langle g, h \rangle$ and the angle between $f(t)$ and $g(t)$.	1	1	6												
	b)	Write a Pseudo code to determine the condition number of the matrix with respect to the L_1 -norm. Calculate the condition number of the coefficient matrix of the system $\begin{bmatrix} -1 & 2 \\ 1 & 10^4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 10^4 \end{bmatrix}$ with respect to L_1 -norm and hence conclude that the problem is ill-conditioned.	1	1	7												
	c)	Prove or disprove whether the mapping $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$ is an inner product space if $\langle u, v \rangle = 3u_1v_1 - u_1v_2 - u_2v_1 + 5u_2v_2$ where $u = (u_1, u_2)$ and $v = (v_1, v_2)$. Hence find the norm of $(-2, 3)$ with respect to norm induced by the inner product.	1	1	7												
UNIT - 4																	
7	a)	Let W be a subspace of \mathbb{R}^5 spanned by $u = (1, 2, 3, -1, 2)$ and $v = (2, 4, 7, 2, -1)$. Find a basis of W^\perp .	1	1	6												
	b)	Find an orthogonal basis and hence an orthonormal basis of the subspace W spanned by $(1, 1, 1, 1)$, $(1, 1, 2, 4)$ and $(1, 2, -4, -3)$ in \mathbb{R}^4 .	1	1	7												
	c)	A steel producer gathers the following data.	2	1	7												
		<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>Year</td> <td>1997</td> <td>1998</td> <td>1999</td> <td>2000</td> <td>2001</td> </tr> <tr> <td>Annual Sales (million \$)</td> <td>1.2</td> <td>2.3</td> <td>3.2</td> <td>3.6</td> <td>3.8</td> </tr> </table> <p>Represent the years 1997, ..., 2001 as 0, 1, 2, 3, 4 respectively and let x denote the year and y denote the annual sales (in millions of dollars). Design and implement the pseudocode to determine the least squares line of the form $y = a + bx$. Hence predict the annual sales in the year 2007.</p>	Year	1997	1998	1999	2000	2001	Annual Sales (million \$)	1.2	2.3	3.2	3.6	3.8			
Year	1997	1998	1999	2000	2001												
Annual Sales (million \$)	1.2	2.3	3.2	3.6	3.8												
		OR															

8	a)	Find the projection of the vector $v = (1, 2, 3, 4, 6)$ along $W = \text{span}\{(1, 2, 1, 2, 1), (1, -1, 2, -1, 1)\}$ in \mathbb{R}^5 .	1	1	6
	b)	Determine an orthogonal matrix whose first row is $\left(\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$.	1	1	7
	c)	Let $C(K)$ denote the set of continuous functions $f : K \rightarrow \mathbb{R}$ where $K \subset \mathbb{R}$ is a closed and bounded interval. For two functions $f, g \in C(K)$, define $d(f, g) = \max_{x \in K} f(x) - g(x) $. Then show that function $d : C(K) \times C(K) \rightarrow \mathbb{R}$ is a metric and the space $(C(K), d)$ is a metric space.	1	1	7
UNIT - 5					
9	a)	Find the minimal polynomial of the matrix $\begin{bmatrix} 3 & 1 & -1 \\ 2 & 4 & -2 \\ -1 & -1 & 3 \end{bmatrix}$.	1	1	6
	b)	Design and implement a pseudocode to compute spectral norm of AA^T if $A = \begin{bmatrix} 2 & 2 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.	2	1	7
	c)	Determine the orthogonal matrix that diagonalizes the matrix $A^T A$ when $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$.	1	1	7
OR					
10	a)	Obtain the eigen space of the linear transformation $T : P_2(t) \rightarrow P_2(t)$ given by $T(at+b) = (2a-b)t + (-a+2b)$.	1	1	6
	b)	Compute A^5 when $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ by using eigenvalue decomposition.	1	1	7
	c)	Find the characteristic and minimal polynomial of the matrix $\begin{bmatrix} 4 & -1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$.	1	1	7
