

**B.M.S. COLLEGE OF ENGINEERING, BENGALURU-19**  
**Autonomous Institute, Affiliated to VTU**  
**DEPARTMENT OF MATHEMATICS**  
**THIRD SEMESTER B.E COURSE(CSE/ISE/CSE-AIDS/CS-IOT/CSE-DS)**

**Course Title: Statistics and Discrete Mathematics**

**Course Code 23MA3BSSDM**

**UNIT-1 Graph Theory**

1. Define the following with an example.
  - (i) Digraph
  - (ii) complete bipartite graph
  - (iii) 3-D hypercube
2. Suppose that in a group of 5 people: A, B, C, D, and E, the following pairs of people are acquainted with each other- A and C, A and D, B and C, C and D & C and E.
  - (a) Draw a graph G to represent this situation.
  - (b) Identity the degree of each vertex.
3. Model the following situation as a graph and write its vertex set and the edge set. Also, write the degree of each vertex. In Netherland, there is a highway from Amsterdam to Breda, another highway from Amsterdam to Capelle aan den IJssel, a highway from Breda to Dordrecht, a highway from Breda to Ede and another one from Dordrecht to Ede, and a highway from Capelle aan den IJssel to Ede.
4. Let P,Q, R,S and T represent 5 cricket teams. Suppose that the teams P,Q,R have played one game with each other and the teams P,S,T have played one game with each other. Represent this situation as a graph and hence determine:
  - (i) The teams that have not played with each other.
  - (ii) The number of games played by each team.
5. For a graph  $G = (V, E)$ , what is the largest possible value of  $|V|$  if  $|E| = 35$  and  $\deg(v) \geq 3, \forall v \in V$  ?
6. For a graph  $G = (V, E)$ , what is the largest possible value of  $|V|$  if  $|E| = 19$  and  $\deg(v) \geq 4, \forall v \in V$  ?
7. For a graph with  $n$  vertices and  $m$  edges if  $\delta$  is the minimum and  $\Delta$  is the maximum of the degrees of the vertices, show that  $\delta \leq \frac{2m}{n} \leq \Delta$ .
8. Determine the order of the graph in the following cases.
  - (i) G is a cubic graph with 9 edges.
  - (ii) G has 10 edges with 2 vertices of degree 4 and all other vertices of degree 3.
  - (iii) G is a regular graph with 15 edges.

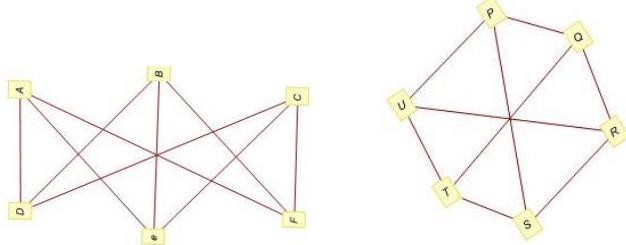
9. Let  $G$  be a graph of order 9 such that each vertex has degree 5 or 6. Prove that at least 5 vertices have degree 6 or at least 6 vertices have degree 5.

10. Show that every simple graph order greater than or equal to 2 must have atleast 2 vertices of the same degree.

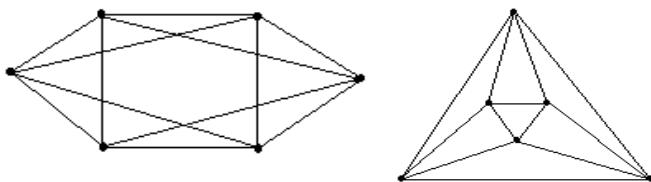
11. Define Isomorphism of graphs. Verify that the given two graphs are isomorphic or not



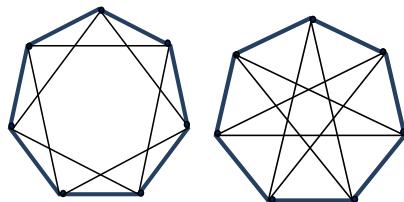
12. Define Isomorphism of the graph. Verify that the given two graphs are isomorphic or not.



13. Verify whether the following graphs are isomorphic or not.



14. With proper labeling show that the following graphs are isomorphic.



15. Suppose a committee has seven members, these members meet each day for lunch at a round table. They decide to sit in such a way that every member has different neighbors at each lunch. How many ways can this arrangement last?

16. Suppose that a tree  $T$  has two vertices of degree 2, four vertices of degree 3 and three vertices of degree 4. Find the number of leaves in  $T$ .

17. Let  $G$  be a simple graph with  $n$  vertices and  $m$  edges where  $m$  is at least 3. If  $m \geq \frac{(n-1)(n-2)}{2} + 2$ , prove that  $G$  is Hamiltonian graph.

18. Prove that a connected graph  $G$  remains connected even after removing an edge  $e$  from  $G$  if and only if  $e$  is a part of some cycle in  $G$ .

19. Let  $G$  be a disconnected graph of even order  $n$  with two components each of which is complete. Prove that  $G$  has a minimum of  $\frac{n(n-2)}{4}$  edges.

20. If  $G$  is a simple graph with  $n$  vertices in which the degree of every vertex is at least  $\binom{n-1}{2}$ , prove that  $G$  is connected.

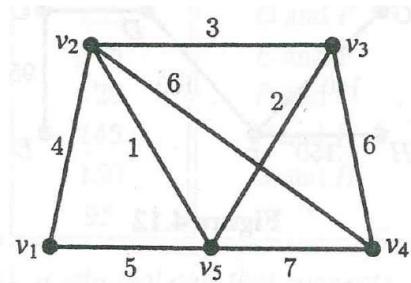
21. Show that a connected graph with exactly 2 vertices of odd degree has an Euler trail.

22. Find all the spanning trees of the given graph:

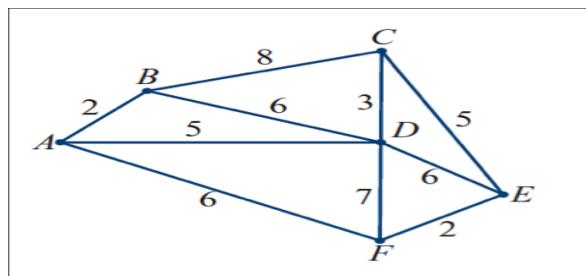


23. For the given graph, draw the following:

(i) Spanning Tree (ii) Edge Disjoint Subgraph (iii) Induced Subgraph

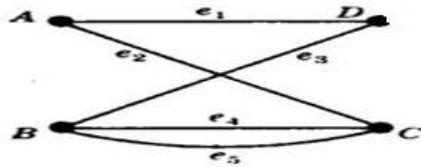


24. For the given graph, draw the following:(i) Spanning Tree (ii) Edge Disjoint Subgraph (iii) Induced Subgraph

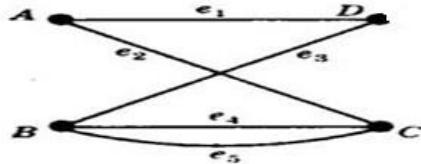


### Matrix Representation of a graph.

1. For the given graph, write its incidence matrix. Hence, write any three observations on it.



2. For the given graph, write its adjacency matrix. Hence, write any three observations on it.



3. Draw the graph G whose incidence matrix is given and hence obtain the adjacency matrix of the corresponding graph G

$$A(G) = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

4. For the given adjacency matrix  $A(G)$ , construct incidence matrix and also write any three observations on incidence matrix.

$$A(G) = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

5. Draw the graph G whose incidence matrix is given and hence obtain the adjacency matrix of the corresponding graph G.

$$A(G) = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

6. Obtain the incidence matrix for the graph whose adjacency matrix is given below.

$$X(G) = \begin{array}{c} a \quad b \quad c \quad d \quad e \\ \hline a & \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \end{bmatrix} \\ b & \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix} \\ c & \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \end{bmatrix} \\ d & \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix} \\ e & \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \end{bmatrix} \end{array}$$

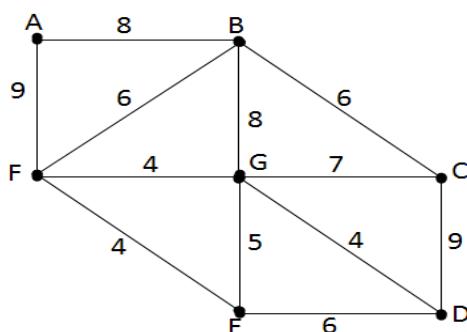
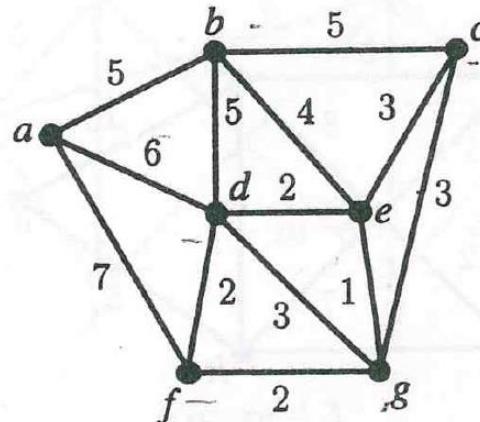
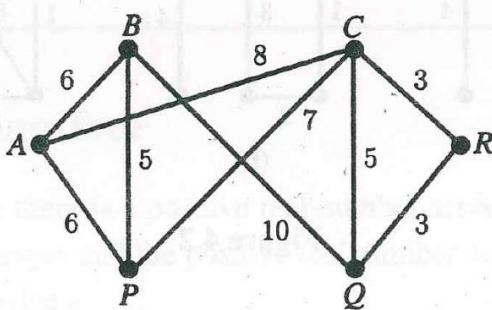
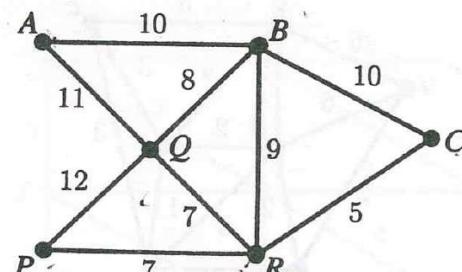
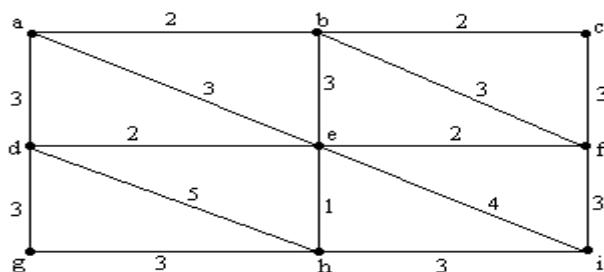
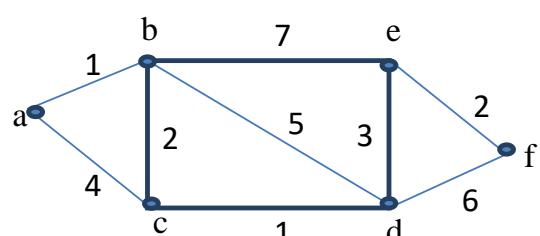
### Kruskal's algorithm

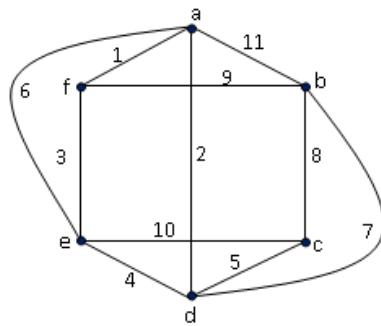
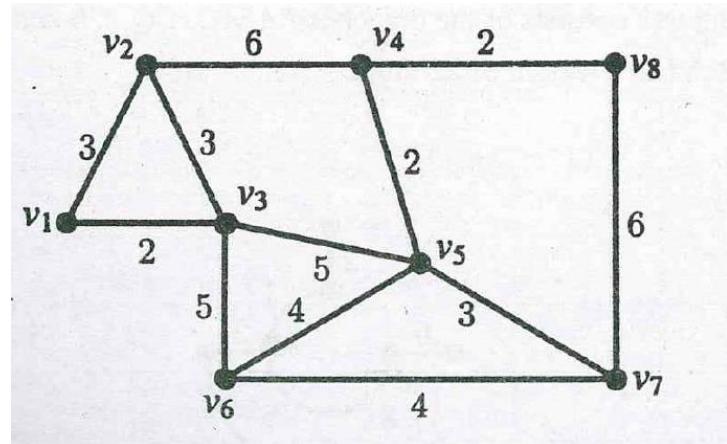
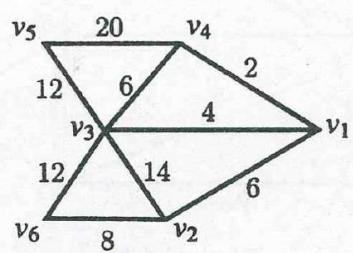
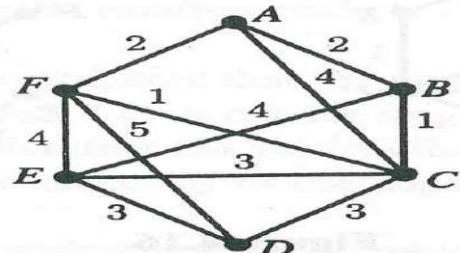
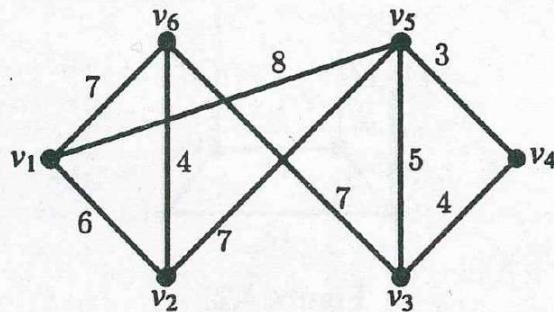
1. Eight cities A,B,C,D,E,F,G,H are required to be connected by a new railway network. The possible tracks and the cost involved to lay them (in crores of rupees) are summarized in the Table:

| Track between | Cost | Track between | Cost |
|---------------|------|---------------|------|
|               |      | C and E       | 95   |
| A and B       | 155  | D and F       | 100  |
| A and D       | 145  | E and F       | 150  |
| A and G       | 120  | F and G       | 140  |
| B and C       | 145  | F and H       | 150  |
| C and D       | 150  | G and H       | 160  |

Determine a railway network of minimal cost that connects all these cities using Kruskal's algorithm.

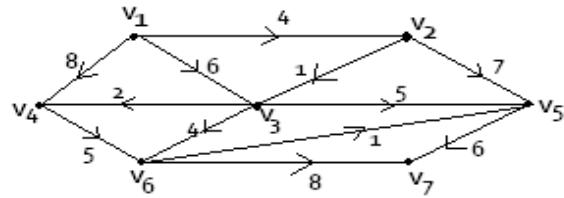
2. Apply Kruskal's algorithm to find a minimal spanning tree for the following weighted graphs and hence find its weight.



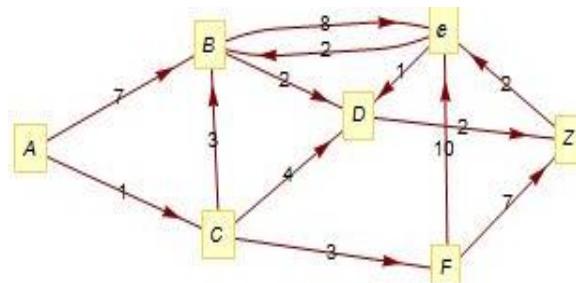


### Dijkstra's

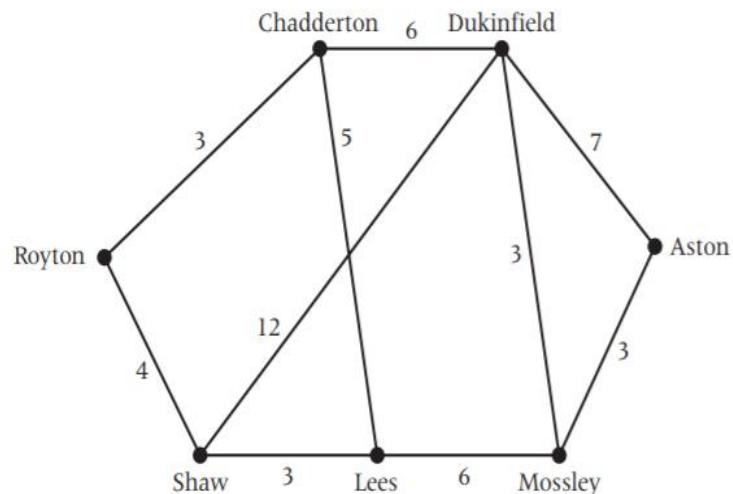
1. Apply Dijkstra's algorithm to find the shortest path and its weight from vertex  $v_1$  to vertex  $v_5$  from the weighted, directed network shown below.



2. Apply Dijkstra's algorithm to find the shortest path and its weight from vertex A to vertex Z from the weighted, directed network



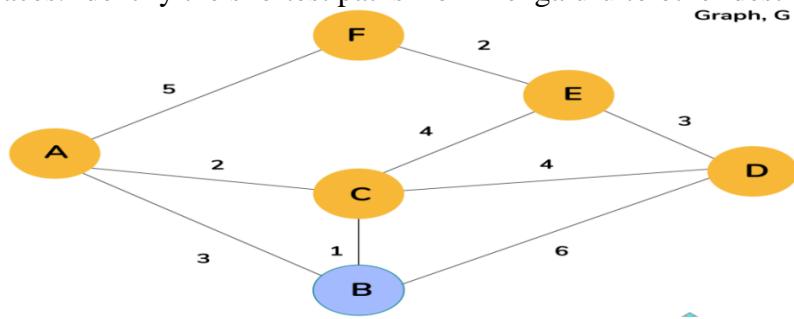
3. The diagram below shows roads connecting villages near to Royton. The numbers on each arc represent the distance, in miles, along each road. Leon lives in Royton and works in Ashton. Use Dijkstra's algorithm to find the minimum distance for Leon's journey to work.



4. Apply Dijkstra's algorithm on the networks below to find the shortest distance from A to H.



5. Consider the map below. The cities have been selected and marked from alphabets A to F and every edge has a cost associated with it. We need to travel from Bengaluru (Vertex B) to all other places. Identify the shortest paths from Bengaluru to other destinations.



\*\*\*\*\*

# UNIT-1

## GRAPH THEORY

### ★ The 4 Colour Theorem:

- Conjecture proposed in 1852 by Möbius-Green
- Every planar graph is four-colourable (Thomas in 1998; Wilson in 2014).

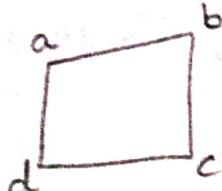
★ Graph: A graph is a pair  $(V, E)$ , where  $V$  is a non-empty set &  $E$  is a set of unordered pair of elements taken from set  $V$ . Here elements of set  $V$  are called vertices & elements of set  $E$  are called edges.  $V$  is called the vertex set & set  $E$  is called the edge set. The graph  $(V, E)$  is denoted by  $G$ .

→  $V \rightarrow$  set of all vertices  $\{a, b\}$  is same then  $\rightarrow$  unordered pair

→  $E \rightarrow$  edge set  $\{a, b\}$  is different from  $\{b, a\} \rightarrow$  ordered pair

★ Graph Theory  $\rightarrow$  Study of relation between dots & lines.

Eg:  $G: \quad \begin{array}{c} a \\ | \\ \square \\ | \\ d \end{array} \quad \begin{array}{l} V = \{a, b, c, d\} \\ E = \{ab, bc, cd, ad\} \end{array}$



NOTE: According to the definition of graph  $G$ , the vertex set should be non-empty.

2. Edge set can be empty (Null Graph) & infinite (Infinite Graph).

### ★ Type of Graphs:-

1. Null graph: A graph with no edges is called null graph. (Or) A graph in which the edge set is empty. is a null graph.

Eg:  $G_1: \cdot \quad G_2: \cdot \quad G_3: \cdot \cdot \cdot$

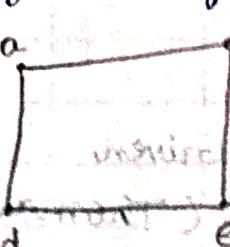
NOTE: Trivial Graph: A null graph with only one vertex is a trivial graph.

2. Finite Graph: A graph with only a finite number of vertices as well as finite no. of edges is called finite graph otherwise infinite graph.

NOTE: 1. Order: Order is the no. of vertices in  $G_1$ .

2. Size: No. of edges in  $G_1$ .

Eg:-

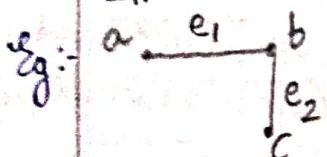


order: 4

Size: 4

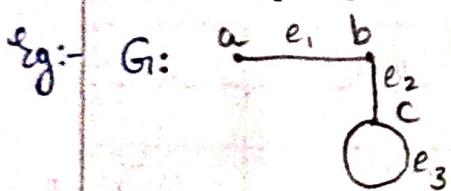
3. Vertices of graph  $G_1$  are denoted by  $V_1, V_2, \dots, V_n$  & edges are denoted by  $e_1, e_2, \dots, e_m$ .

4. If  $V_i$  &  $V_j$  denote two vertices of graph, &  $e$  is an edge joining  $V_i$  &  $V_j$ , then  $V_i$  &  $V_j$  are called end vertices of  $e$ .



End vertices of  $e_1$  are  $a, b$ .  
b, c are end vertices of  $e_2$ .

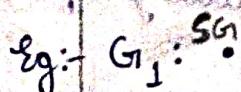
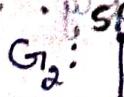
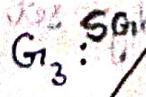
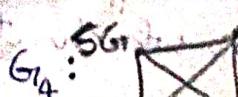
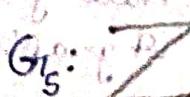
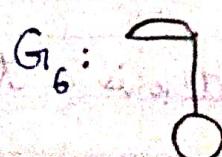
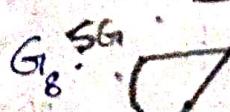
5. Self loop: An edge whose end vertices co-incide. (or) an edge joining a vertex to itself is called a self loop.



Here,  $e_3$  is a self loop.

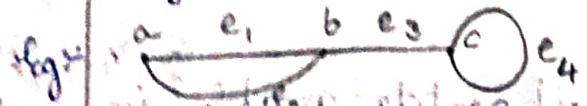
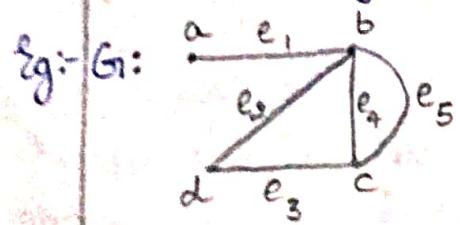
6. Parallel edges or multiple edges: Two or more edges with same pair of end vertices are called multiple edges.

3. Simple graph: A graph that does not contain loops & multiple edges is called a simple graph.



4. Labeled graph: A graph in which vertices are not labeled is called unlabeled graph else labeled graph.

NOTE: 1. When a vertex  $v$  of a graph is an end vertex of an edge  $e$  of a graph  $G$ , we say the edge  $e$  is incident on vertex  $v$ . Since every edge has two end vertices, every edge is incident on two vertices, one on each end (except self loop).



Adjacent edges: ①  $e_1, e_2, e_4, e_5$

②  $e_2, e_3$

③  $e_3, e_4, e_5$

Adjacent vertices: a, b, bc, bd, cd

5. Complete graph: A simple graph of order  $n \geq 2$  in which there is an edge between every pair of vertices is called a complete graph & is denoted by  $K_n$ .

Eg:-  $K_2$ :

$K_3$ :

$K_4$ :

$K_5$ :

$K_6$ :

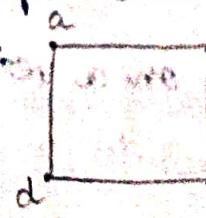
$K_7$ :

$K_8$ :

$K_9$ :

6. Bipartite graph: A simple graph  $G_1$  is such that its vertex set  $V$  is the union of two of its mutually disjoint non-empty subsets  $V_1$  &  $V_2$  which are such that each edge in  $G_1$  joins a vertex in  $V_1$  & a vertex in  $V_2$ . Then  $G_1$  is called a bipartite graph denoted by  $G_1(V_1, V_2, E)$ , where  $E$  is the edge set &  $V_1$  and  $V_2$  are bipartites.

Eg:- (i)  $G_1$ :



$$V = \{a, b, c, d\}$$

$$V_1 = \{a, c\}$$

$$V_2 = \{b, d\}$$

$G_1$ :

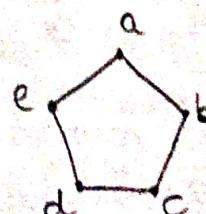


$V = \{a, b, c, d\}$

$V_1 = \{a, c\}$

$V_2 = \{b, d\}$

(ii)

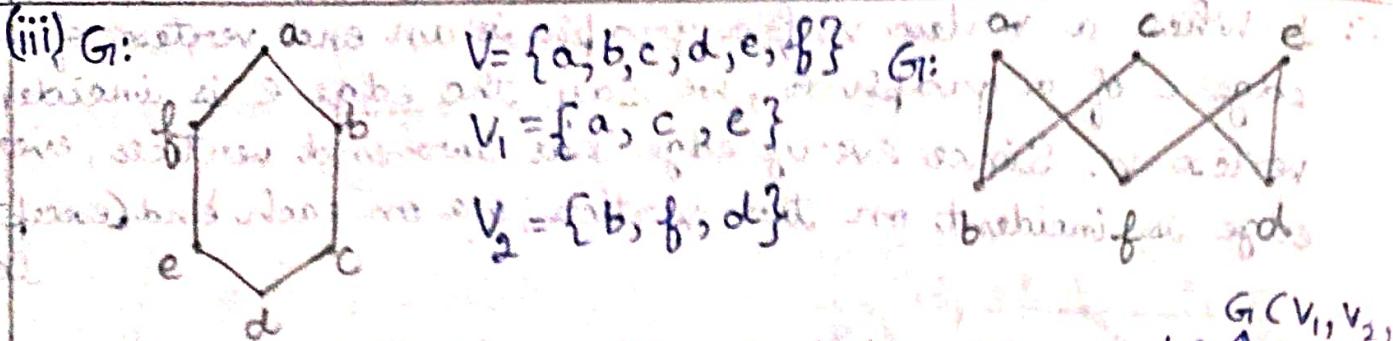


$$V = \{a, b, c, d, e\}$$

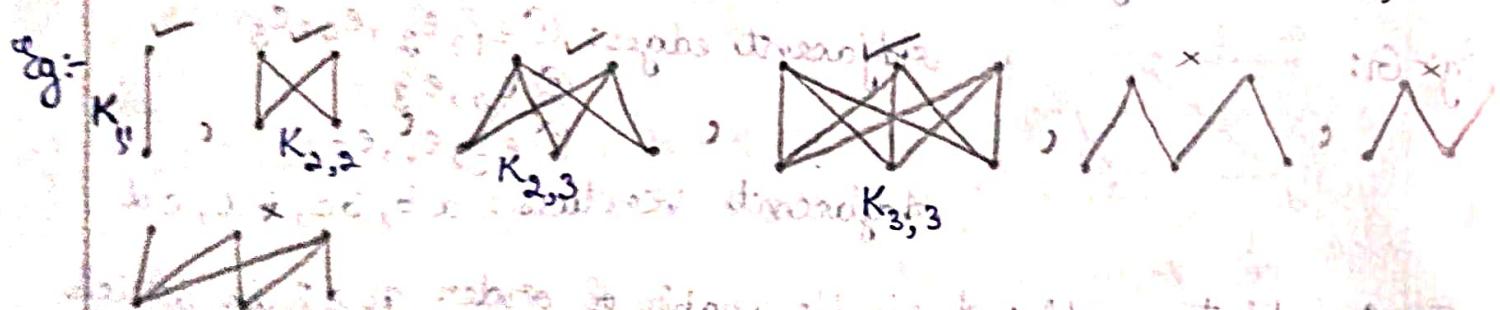
$$V_1 = \{a, c\}$$

$$V_2 = \{b, d, e\}$$

This is not a bipartite graph.  
 $\{d\}$  cannot be anywhere



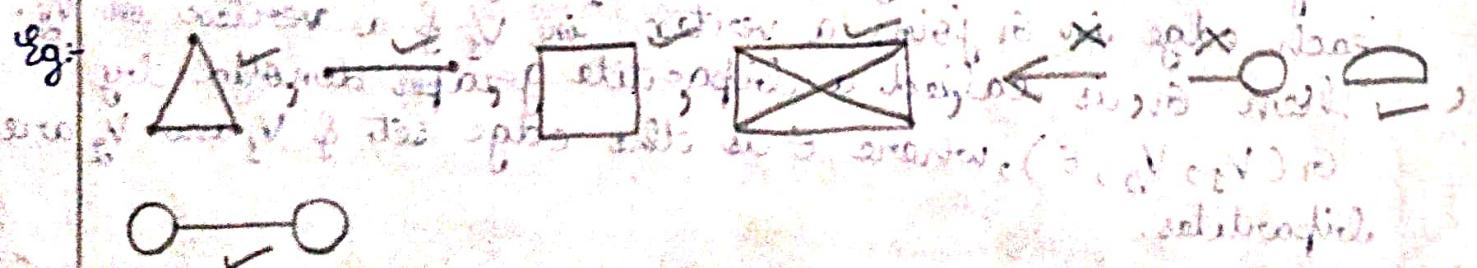
7. Complete bipartite graph: A bipartite graph in which there is an edge between every vertex in  $V_1$  & every vertex in  $V_2$  is called a complete bipartite graph. A complete graph  $G(V_1, V_2, E)$  in the bipartite  $V_1$  &  $V_2$  contains  $r$  &  $s$  vertices respectively with  $r \leq s$  denoted by  $K_{r,s}$ .



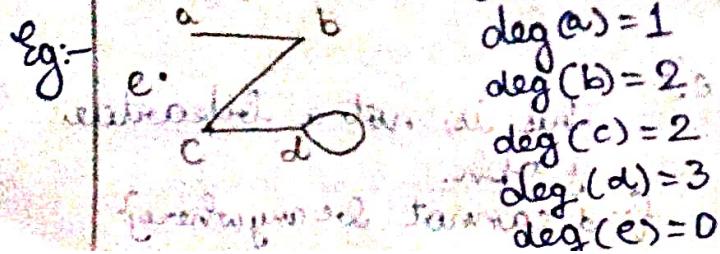
NOTE:- (i)  $K_{r,s}$  has  $r+s$  vertices &  $r s$  edges.

(ii)  $K_{3,3}$  is called Kuratowski's second graph.

8. Regular Graph: A graph in which all the vertices are of the same degree. It is called a regular graph of degree  $k$  or  $k$ -regular graph.



NOTE: Degree of a vertex: No. of edges incident on a vertex is called its degree.



Any loop contributes 2 to the degree.

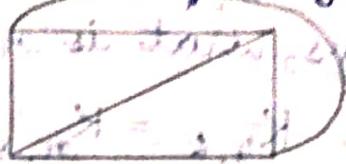
★ Problem :- It is a result of graph theory that if  $G$  is a simple graph with  $n$  vertices, then the number of edges in  $G$  is given by  $\frac{n(n-1)}{2}$ .

1. Which of the following graph is complete graph?

$G_1$ :



$G_2$ :



ans  $G_1$  is not a complete graph as it is not a simple graph.

$G_2$  is a simple graph where every vertex is connected to remaining vertices of  $G_2$ , i.e.  $G_2$  is a complete graph.

2. Show that a complete graph with  $n$  vertices,  $K_n$  has  $\frac{n(n-1)}{2}$  edges.

ans Proof: It has  $n$  vertices. No. of edges in  $K_n$  is equal to choosing any two vertices out of  $n$  vertices & then making them adjacent which is equal to  $nC_2$ .

$$nC_2 = \frac{n!}{(n-2)!2!} = \frac{(n-1)n!}{(n-2)!2!} = \frac{n(n-1)}{2}$$

$\therefore$  No. of edges in  $K_n$  is  $\frac{n(n-1)}{2}$ .

3. Show that a simple graph of order 4 & size 7 & a complete graph of order 4 & size 5 do not exist.

ans No. of edges in a simple graph with  $n=4$  is  $\leq \frac{4(3)}{2} = 6$ . Given  $m=7$ .  $\therefore$  A simple graph of order 4 & size 7 does not exist.

Given  $n=4$ .

No. of edges in a complete graph with  $n=4$  is  $\leq \frac{4(3)}{2} = 6$ . Given  $m=5$ .  $\therefore$  A complete graph of order 4 & size 5 does not exist.

A complete graph has  $\frac{n(n-1)}{2}$  edges.

Given  $n=4$ , no. of edges in complete graph with  $n=4$  is  $\frac{4(3)}{2} = 6$ .



Given  $n=4$  &  $m=5$ , but this is a contradiction.

$\therefore$  No complete graph exists with  $n=4$  &  $m=5$ .

4. How many edges & vertices are there in the complete bipartite graphs  $K_{4,6}$ ? If graph  $K_{9,12}$  has 72 edges, what is  $g_1$ ?

ans Given  $K_{4,6} = K_{g_1, g_2}$

No. of vertices in  $K_{4,6} = g_1 + g_2 = 4 + 6 = 10$

No. of edges in  $K_{4,6} = g_1 g_2 = 4 \times 6 = 24$

Given  $K_{g_1, g_2}$  has 72 edges, i.e.  $g_1 g_2 = 72$  more at

W.R.T, No. of edges in  $K_{g_1, g_2} = g_1 \times g_2$

$$72 = g_1 \times g_2 \text{ edges (1-ve)}$$

Given  $g_1 + g_2 = 10$   $\therefore g_1 = 6$

★ Hand Shaking Property [First theorem of graph theory]:

The sum of the degrees of all the vertices in a graph is an even number & this number is equal to twice the number of edges in the graph.

$$\sum_{i=1}^n d(V_i) = 2m$$

1. At a party, each person shakes hands with every other person exactly once. If there were a total of 28 handshakes, how many people attended the party?

ans From handshaking property,  $\sum_{i=1}^n d(V_i) = 2m$

Given:  $m = 28$

$$n = ?$$

$$d(V_i) = 2n - 1$$

$$\text{Hence Total: } \sum_{i=1}^n (2n-1) = 2(28)$$

$$2+2+...+2 = 56 \quad (n-1) + (n-1) + ... + (n-1) = 56$$

$$n(n-1) = 56 \Rightarrow n^2 - n - 56 = 0 \Rightarrow n^2 - 8n + 7n - 56 = 0$$

$$\Rightarrow n(n-8) + 7(n-8) \Rightarrow n = 8 \text{ or } n = 7 \therefore 8 \text{ people attended the party.}$$

2. In a social network, if the sum of degrees of all users is 90, how many connections are there in the network?

ans Given:  $\sum_{i=1}^n d(V_i) = 90$

Sum of degrees of vertices is even. Many edges are odd.  $\sum_{i=1}^n d(V_i) = 2m$ . Vertices have odd degrees. Sum of degrees is even.  $90 = 2m$ .  $\therefore m = 45$

3. In every graph, the number of vertices of odd degrees is even.

ans Let  $G$  be a graph with  $n$  vertices &  $m$  edges. Let  $v_1, v_2, \dots, v_n$  be  $n$  vertices.

Let  $v_1, v_2, \dots, v_k$  be vertices with even degree & remaining  $v_{k+1}, \dots, v_n$  be vertices of odd degree.

From Hand Shaking Property,  $\sum_{i=1}^n d(V_i) = 2m$

$$\sum_{i=1}^k d(V_i) + \sum_{i=k+1}^n d(V_i) = 2m \quad \text{--- (1)}$$

The first sum on LHS of (1) is an even number (sum of even numbers is even)

$$\sum_{i=k+1}^n d(V_i) = \text{Even} \quad \text{--- (2)}$$

RHS of eqn (2) is an even number (even - even = even)

$$\sum_{i=k+1}^n d(V_i) = \text{Even} \quad \text{--- (3)}$$

i. Sum of odd degree vertices in  $G$  is even.

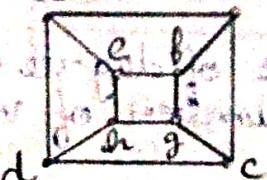
$\therefore$  There has to be even no. of terms on LHS of (3). (odd numbers should be added even times to make sum even)

$\therefore$  In any graph  $G$ , number of vertices of odd degrees is even.

4. Show that the hypercube  $Q_3$  is a bipartite graph which is not a complete bipartite graph.

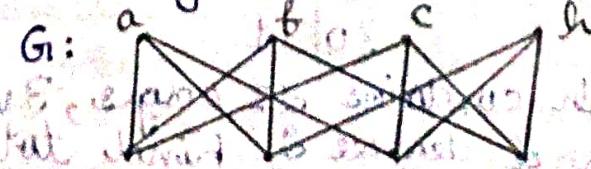
ans

Q:



$$V_1 = \{a, f, c, h\}$$

$$V_2 = \{b, e, d, g\}$$



As  $V_1 \cup V_2 = V$ ,  $V_1 \cap V_2 = \emptyset$  & every edge of  $Q_3$  joins a vertex of  $V_1$  to a

vertex of  $V_2$ .  $\therefore Q_3$  is a bipartite graph  
 $\therefore Q_3$  is not complete bipartite as vertices of  $V_1$  are not adjacent to all vertices of  $V_2$ . [Eg: - a & g are not adjacent]

5. Prove that the  $k$ -dimensional hypercube  $Q_k$  has  $2^{k-1}k2^k$  edges. Determine the number of edges of  $Q_8$ .

ans No. of vertices in  $Q_k = 2^k$  & degree of every vertex in  $Q_k$  is  $k$ .  
 $\therefore$  By handshaking property,  $\sum_{i=1}^{2^k} d(V_i) = 2m$

$$\text{LHS} = (2^k)k \underbrace{k + k + \dots + k}_{k \text{ times}} = 2m$$

$$\text{RHS} = (2^k)k \underbrace{2 + 2 + \dots + 2}_{k \text{ times}} = 2m$$

$$\therefore m = \frac{2^k k}{2} = 2^{k-1}k$$

$$\text{No. of edges in } Q_8 = 8 \cdot 2^7 = 8 \cdot 128 = 1024$$

6. Find the number of vertices of graph  $G$  which is regular graph with 15 edges.

ans Let degree of every vertex in  $G$  be  $k$ .

By handshaking property:  $\sum_{i=1}^n d(V_i) = 2m$

| $k$ | $n$ | $m$ |
|-----|-----|-----|
| 1   | 30  | 15  |
| 2   | 15  | 15  |
| 3   | 10  | 15  |
| 5   | 6   | 15  |
| 6   | 5   | 15  |
| 10  | 3   | 15  |
| 15  | 2   | 15  |
| 30  | 1   | 15  |

7. A graph contains 21 edges, 3 vertices of degree 4 & all other vertices of degree 2. Find total number of vertices.

ans Let  $n$  be no. of vertices in  $G$

$$m = 21 \quad \begin{array}{c} n \\ \diagdown \quad \diagup \\ 3 \quad n-3 \\ \text{deg 4, } \text{deg 2} \end{array}$$

By HSP,  $\sum_{i=1}^n d(v_i) = 2m$

$$4 + 4 + 4 + 2 + 2 + \dots + 2 = 2(n-1) + 2$$

(n-3) times

$$12 + 2(n-3) = 42$$

$$2n-6 = 30$$

$$2n = 36$$

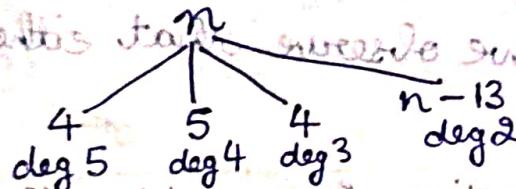
$$n = 18$$

$\therefore$  Total number of vertices is 18.

8. A simple graph contains 35 edges, four vertices of degree 5, five vertices of degree 4 & four vertices of degree 3. Find the number of vertices with degree 2.

ans Let  $n$  be no. of vertices in  $G$

$$m = 35$$



By HSP,  $\sum_{i=1}^n d(v_i) = 2m$

$$5 + 5 + 5 + 4 + 4 + 4 + 4 + 3 + 3 + 3 + 3 + 2 + 2 + \dots + 2 = 2(35)$$

(n-13) times

$$5(4) + 4(5) + 3(4) + 2(n-13) = 70$$

$$20 + 20 + 12 + 2n - 26 = 70$$

$$52 + 2n - 26 = 70$$

$$26 + 2n = 70$$

$\therefore$  Total no. of vertices = 22.  $2n = 44$

No. of vertices with deg 2 =  $22 - 13$

$$= 9$$

9. Let  $G$  be a graph of order 9 such that each vertex has degree 5 or 6. Prove that at least 5 vertices have degree 6 or at least 6 vertices of degree 5.

ans Let  $G$  be a graph with 9 vertices &  $m$  edges. Out of 9 vertices, let  $p$  vertices be of deg 5 & remaining  $9-p=9$  vertices be of deg 6.

To prove:  $p \geq 6$  or  $q \geq 5$

$$\text{By HSP: } \sum_{i=1}^q d(v_i) = 2m \quad \text{and } \sum_{i=1}^q d(v_i) = 5p + 6q$$

$$5 + \underbrace{\dots + 5}_{p \text{ times}} + \underbrace{6 + \dots + 6}_{q \text{ times}} = 2m$$

$$5p + 6q = 2m$$

$$5p + 6(9-p) = 2m$$

$$54 - p = 2m$$

$$p = 54 - 2m$$

$p \rightarrow \text{even}$

Ex: 6 waiters work in 28 minutes. Working schedule A: 8 waiters for waiter work 6 weeks. Working schedule B: 8 waiters for waiter work 7 weeks.

|   |   |
|---|---|
| 0 | 9 |
| 2 | 7 |
| 4 | 5 |
| 6 | 3 |
| 8 | 1 |

In the above cases, we observe that either  $p \geq 6$  or  $q \geq 5$ .

10. For a graph with  $n$  vertices &  $m$  edges, if  $\delta$  is the minimum &  $\Delta$  is the maximum of degrees, show that  $\delta \leq \frac{2m}{n} \leq \Delta$ .

ans Let  $G$  be a graph with  $n$  vertices &  $m$  edges. Let  $d_1, d_2, \dots, d_n$  be degree of vertices  $v_1, v_2, \dots, v_n$ . Let  $\delta$  be minimum &  $\Delta$  be maximum degree among  $d_1, d_2, \dots, d_n$ .

$$\delta \leq d_1, \delta \leq d_2, \dots, \delta \leq d_n \quad \text{--- (1)}$$

$$\Delta \geq d_1, \Delta \geq d_2, \dots, \Delta \geq d_n \quad \text{--- (2)}$$

$$\text{By HSP, } \sum_{i=1}^n d(v_i) = 2m \quad \text{--- (3)}$$

$$d_1 + d_2 + \dots + d_n = \alpha$$

From (1) & (2),  $\delta + \delta + \dots + \delta \leq d_1 + d_2 + \dots + d_n \leq \Delta + \Delta + \dots + \Delta$

$$\delta \leq \frac{2m}{n}$$

$$\Delta + \Delta + \dots + \Delta \geq d_1 + d_2 + \dots + d_n$$

$$n\Delta \geq 2m$$

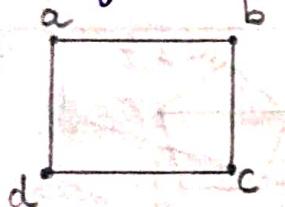
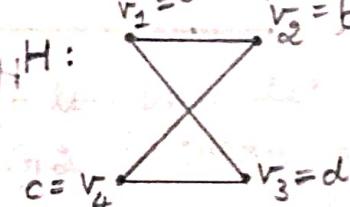
$$\Delta \geq \frac{2m}{n}$$

$$\therefore \Delta \leq \frac{2m}{n} \leq \Delta$$

23/10/24

\* **Isomorphism**:- Consider two graphs  $G(V, E)$  &  $G' = (V', E')$ . Suppose there exist a function  $f: V \rightarrow V'$  such that  $f$  is one to one correspondence & for all vertices  $a, b$  of  $G$ ,  $ab$  is an edge of  $G$  if & only if  $f(a)f(b)$  is an edge of  $G'$ . Then  $f$  is called an isomorphism between  $G$  &  $G'$  written as  $G \cong G'$ .

\* **I Check for isomorphism.**

1.  $G:$  $H:$ 

ans Graph  $G$  has 4 vertices, 4 edges & degree sequence 2, 2, 2, 2. Graph  $H$  has 4 vertices, 4 edges & degree sequence 2, 2, 2, 2.

Vertex correspondence:

$$a \leftrightarrow v_1$$

$$b \leftrightarrow v_2$$

$$c \leftrightarrow v_4$$

$$d \leftrightarrow v_3$$

Edge correspondence:  $H$

$$ab \leftrightarrow v_1 v_2$$

$$bc \leftrightarrow v_2 v_4$$

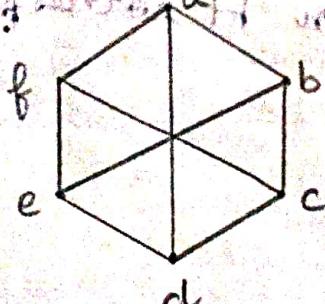
$$cd \leftrightarrow v_4 v_3$$

$$da \leftrightarrow v_3 v_1$$

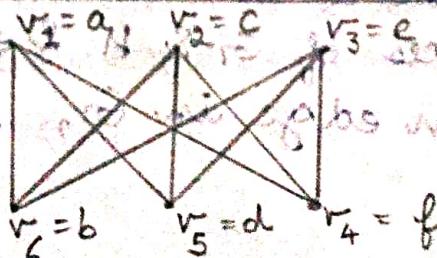
As there is one-to-one correspondence between vertices of  $G$  &  $H$  & every edge in  $H$  corresponds to an edge in graph  $G$ ,  $\therefore G \cong H$ .

2.

$G_1$ : A hexagon with vertices labeled a, b, c, d, e, f.



$G_2$ : A hexagon with vertices labeled v1=a, v2=c, v3=e, v4=f, v5=d, v6=b.



ans Graph  $G_1$  has 6 vertices, 9 edges & deg sequence: 3, 3, 3, 3, 3, 3  
 Graph  $G_2$  has 6 vertices, 9 edges & deg sequence: 3, 3, 3, 3, 3, 3

Vertex correspondence: Edge correspondence:

$$a \leftrightarrow v_1$$

$$b \leftrightarrow v_6$$

$$c \leftrightarrow v_2$$

$$d \leftrightarrow v_5$$

$$e \leftrightarrow v_3$$

$$f \leftrightarrow v_4$$

$$ab \leftrightarrow v_1 v_6$$

$$bc \leftrightarrow v_6 v_2$$

$$cd \leftrightarrow v_2 v_5$$

$$de \leftrightarrow v_5 v_3$$

$$ef \leftrightarrow v_3 v_4$$

$$fa \leftrightarrow v_4 v_1$$

$$ad \leftrightarrow v_1 v_5$$

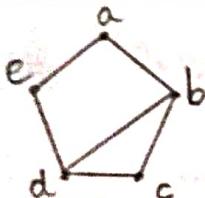
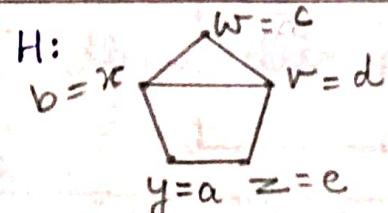
$$be \leftrightarrow v_6 v_3$$

$$cf \leftrightarrow v_2 v_4$$

As there is one-to-one correspondence between vertices of  $G_1$  &  $G_2$  & every edge in  $G_2$  corresponds to an edge in  $G_1$ ,  $\therefore G_1 \cong G_2$ .

3.

$G_1$ :



ans.

$G_1$  has 5 vertices, 6 edges & deg sequence 2, 2, 2, 3, 3  
 $H$  has 5 vertices, 6 edges & deg sequence 2, 2, 2, 3, 3

Vertex correspondence:

$$a \leftrightarrow y$$

$$b \leftrightarrow x$$

$$c \leftrightarrow w$$

$$d \leftrightarrow v$$

$$e \leftrightarrow z$$

Edge correspondence:

$$ab \leftrightarrow yx$$

$$bc \leftrightarrow xw$$

$$cd \leftrightarrow wv$$

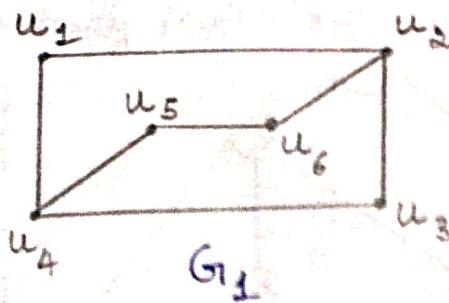
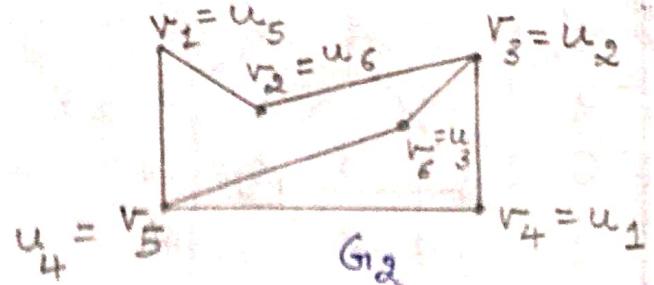
$$de \leftrightarrow vz$$

$$bd \leftrightarrow xv$$

$$ea \leftrightarrow zy$$

As there is one-to-one correspondence between vertices of  $G_1$  &  $H$  & every edge in  $H$  corresponds to an edge in  $G_1$ ,  $\therefore G_1 \cong H$ .

4.



ans

$G_1$  has 6 vertices, 7 edges, deg seq.: 2, 2, 2, 2, 3, 3

$G_2$  has 6 vertices, 7 edges, deg seq: 2, 2, 2, 2, 3, 3

Vertex correspondence:

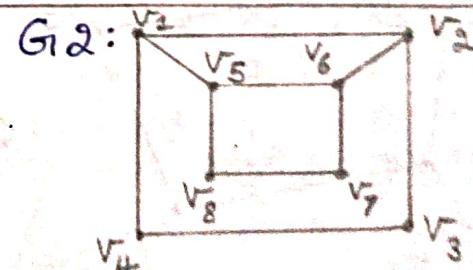
$$\begin{aligned} u_1 &\leftrightarrow v_4 \\ u_1 &\leftrightarrow v_3 \\ u_2 &\leftrightarrow v_3 \\ u_3 &\leftrightarrow v_6 \\ u_4 &\leftrightarrow v_5 \\ u_5 &\leftrightarrow v_1 \\ u_6 &\leftrightarrow v_2 \end{aligned}$$

Edge correspondence:

$$\begin{aligned} u_1 u_2 &\leftrightarrow v_4 v_3 \\ u_1 u_3 &\leftrightarrow v_3 v_6 \\ u_3 u_4 &\leftrightarrow v_6 v_5 \\ u_4 u_1 &\leftrightarrow v_5 v_4 \\ u_2 u_6 &\leftrightarrow v_3 v_2 \\ u_6 u_5 &\leftrightarrow v_2 v_1 \\ u_5 u_4 &\leftrightarrow v_1 v_5 \end{aligned}$$

As there is one-to-one correspondence between vertices of  $G_1$  &  $G_2$  & every edge in  $G_2$  corresponds to an edge in  $G_1$ ,  $\therefore G_1 \cong G_2$ .

5.



$G_1$  has 8 vertices, 10 edges & deg. seq.: 2, 2, 2, 2, 3, 3, 3, 3

$\therefore G_2$  has 8 vertices, 10 edges & deg. seq.: 2, 2, 2, 2, 3, 3, 3, 3

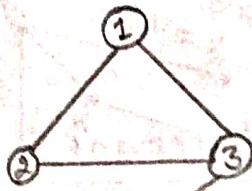
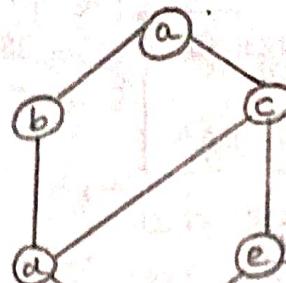
$a$  is degree 3 vertex adjacent to 2 vertices of deg. 2 & 1 vertex of deg. 3 in  $G_1$ .

In  $G_2$ , we cannot find a deg. 3 vertex adjacent

to 2 vertices of deg. 2 & 1 vertex of deg. 3.

So, there is no one-to-one correspondence between vertices of  $G_1$  &  $G_2$ .  $\therefore G_1 \not\cong G_2$ .

6.



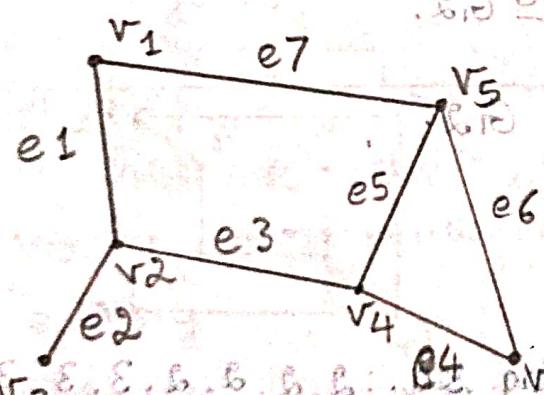
$G$  has 6 vertices, 7 edges & deg. seq.: 2, 2, 2, 2, 3, 3  
 $H$  has 6 vertices, 7 edges & deg. seq.: 2, 2, 2, 2, 3, 3

In  $G$ , ③ is a degree 3 vertex adjacent to three degree 2 vertices. But we cannot find such a vertex in  $H$ .  
 $\therefore$  There is no one-to-one correspondence between vertices of  $G$  &  $H$ .  $\therefore G \not\cong H$ .

### ★ Matrix representation of a graph:-

#### 1. Incidence Matrix:

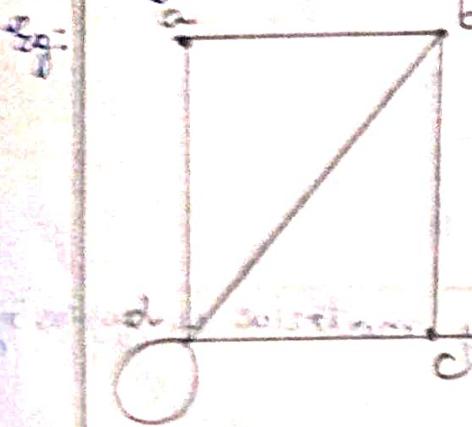
Ex:



Incidence matrix:-

$$A = \begin{bmatrix} v_1 & 1 & 0 & 0 & 0 & 0 & 1 \\ v_2 & 1 & 1 & 1 & 0 & 0 & 0 \\ v_3 & 0 & 1 & 0 & 0 & 0 & 0 \\ v_4 & 0 & 0 & 1 & 1 & 1 & 0 \\ v_5 & 0 & 0 & 0 & 0 & 1 & 1 \\ v_6 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \quad 6 \times 7$$

## 2. Adjacency Matrix:



$$i) X = \begin{bmatrix} a & b & c & d & e \end{bmatrix} \begin{bmatrix} a & b & c & d & e \\ b & a & 0 & 1 & 0 \\ c & 0 & b & a & 1 \\ d & 1 & 0 & c & a \\ e & 0 & 1 & d & b \end{bmatrix} \quad 5 \times 5$$

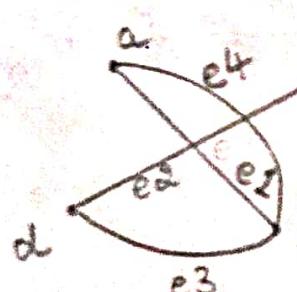
$$ii) X = \begin{bmatrix} a & b & c & d & e \end{bmatrix} \begin{bmatrix} a & b & c & d & e \\ b & 0 & 1 & 0 & 0 \\ c & 1 & 0 & b & 0 \\ d & 0 & 1 & 0 & c \\ e & 0 & 0 & 1 & d \end{bmatrix} \quad 5 \times 5$$

## ★ Problems:-

1. Draw graph  $G$  whose incidence matrix is given by

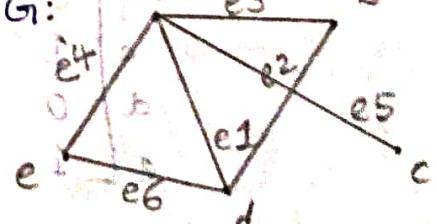
$$i) \begin{bmatrix} e_1 & e_2 & e_3 & e_4 \\ a & 1 & 0 & 0 & 1 \\ b & 0 & 1 & 0 & 0 \\ c & 1 & 0 & 1 & 1 \\ d & 0 & 1 & 1 & 0 \end{bmatrix}$$

ans:  $G$ :



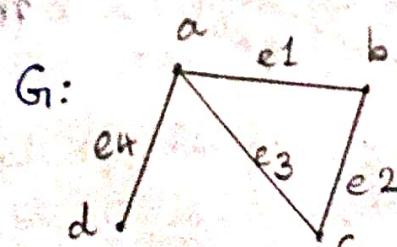
$$ii) \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ a & 1 & 0 & 1 & 1 & 1 & 0 \\ b & 0 & 1 & 1 & 0 & 0 & 0 \\ c & 0 & 0 & 0 & 0 & 1 & 0 \\ d & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

ans:  $G$ :



2. For the given incidence matrix, obtain the adjacency matrix.

$$i) \begin{bmatrix} e_1 & e_2 & e_3 & e_4 \\ a & 1 & 0 & 1 & 1 \\ b & 1 & 0 & 1 & 0 \\ c & 0 & 1 & 0 & 1 \\ d & 0 & 0 & 0 & 1 \end{bmatrix}$$



adjacency matrix is:

$$A = \begin{bmatrix} a & b & c & d \\ a & 0 & 1 & 1 & 1 \\ b & 1 & 0 & 1 & 0 \\ c & 1 & 1 & 0 & 0 \\ d & 1 & 0 & 0 & 0 \end{bmatrix}$$

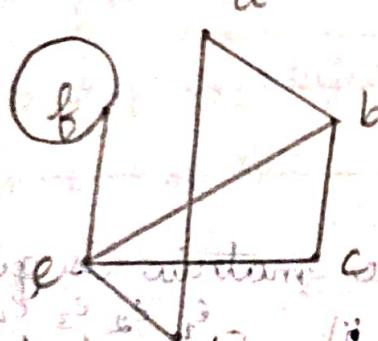
adjacency matrix is:

3. Construct a graph whose adjacency matrix is given by

$$a \ b \ c \ d \ e \ f \\ a \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ b & 1 & 0 & 1 & 0 & 1 \\ c & 0 & 1 & 0 & 0 & 1 & 0 \\ d & 1 & 0 & 0 & 0 & 1 & 0 \\ e & 0 & 1 & 1 & 1 & 0 & 1 \\ f & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

ans

$G_1$ :

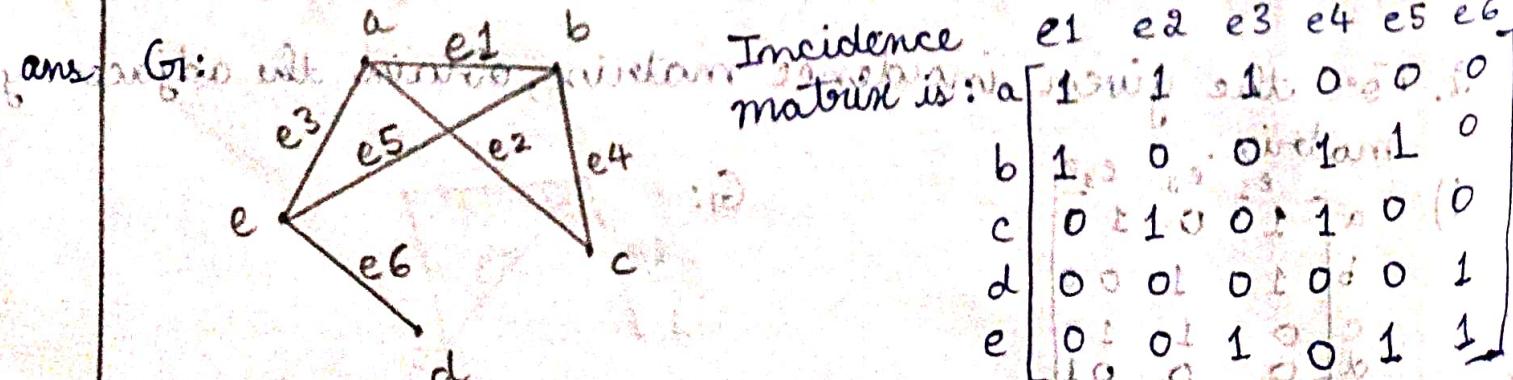


4. For the given adjacency matrix, construct incidence matrix.

$$x(G_1) = \begin{bmatrix} a & b & c & d & e \\ a & 0 & 1 & 1 & 0 & 1 \\ b & 1 & 0 & 1 & 0 & 1 \\ c & 1 & 1 & 0 & 0 & 0 \\ d & 0 & 0 & 0 & 0 & 1 \\ e & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

ans



5. Without actually constructing the graph, show that there exist no connected graph whose incidence matrix is:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

ans

$$C_3 \leftrightarrow C_6 \Rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} A(G_1) & 0 \\ 0 & A(G_2) \end{bmatrix}$$

$\therefore$  The resultant matrix is of the form  $\begin{bmatrix} A(G_1) & 0 \\ 0 & A(G_2) \end{bmatrix}$ ,

where  $A(G_1) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$  &  $A(G_2) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ , the

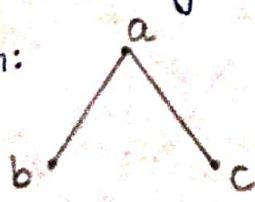
graph for the given matrix is a disconnected graph.

★ **Subgraph:** Given two graphs  $G_1$  &  $G_2$  we say  $G_1$  is a subgraph of  $G_2$  denoted by  $G_1 \subseteq G_2$  if following conditions hold:

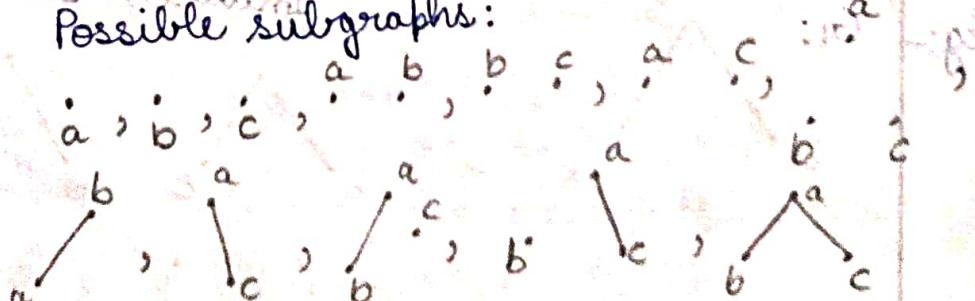
(i) All the vertices & all the edges of  $G_1$  are in  $G_2$ .

(ii) Each edge of  $G_1$  has same end vertices in  $G_2$  as in  $G_1$ .

eg:-



Possible subgraphs:



NOTE:- i) A subgraph of a graph is also a graph.  
 ii) Any graph isomorphic to a subgraph of graph  $G_1$  is also a subgraph of  $G_1$ .  
 iii) Every graph is a subgraph of itself.  
 iv) A single vertex in a graph  $G$  is a subgraph of  $G$ .

v) A single edge, ring a graph  $G_1$  together with its end vertices is a subgraph of  $G_1$ . (i)

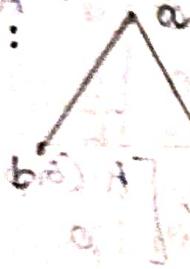
vi) If  $G_1 \subseteq G_2$  &  $G_2 \subseteq G_3$ , then  $G_1 \subseteq G_3$ . (ii)

★ Types of Subgraph:-

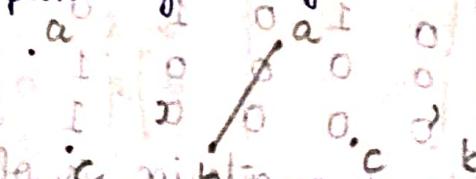
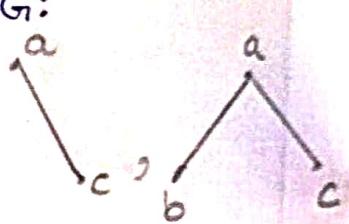
1. Spanning subgraph: Given a graph  $G_1(V, E)$  if there is a subgraph  $G_1(V_1, E_1)$  of  $G_1$  such that  $V_1 = V$ , then  $G_1$  is a spanning subgraph of  $G_1$ .

NOTE: Every graph is its own spanning subgraph. (iii)

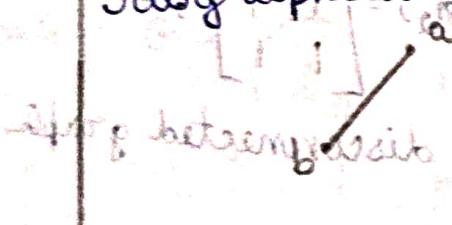
Eg:-  $G_1$ :



Spanning subgraphs of  $G_1$ :

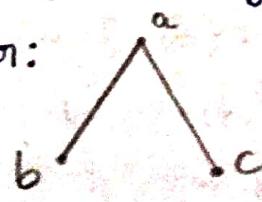
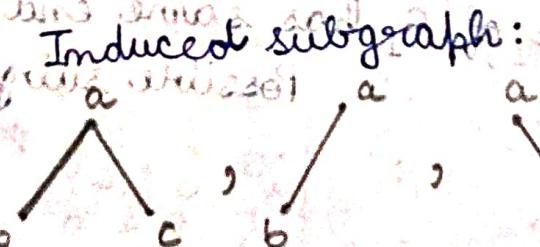


Subgraphs that are not Spanning:-



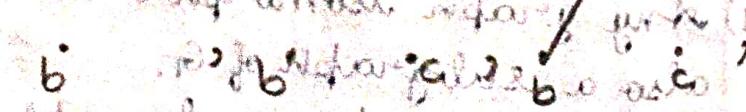
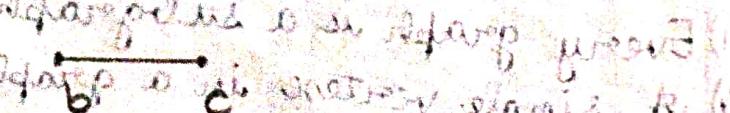
2. Induced subgraph: Given a graph  $G_1(V, E)$  if there is a subgraph  $G_1(V_1, E_1)$  of  $G_1$  such that every edge  $ab$  of  $G_1$ , where  $a, b \in V_1$  is an edge of  $G_1$  also. Then  $G_1$  is called an induced subgraph of  $G_1$  induced by  $V_1$  denoted by  $\langle V_1 \rangle$ . (i)

Eg:-



$a, b, c$

Not induced subgraphs:

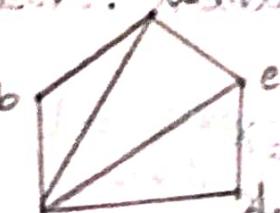


★ Edge disjoint & vertex disjoint: Let  $G_1$  be a graph. If  $G_1$  &  $G_2$  be two subgraphs of  $G_1$ . Then

(i)  $G_1$  &  $G_2$  are said to be edge disjoint if they do not have any edge in common.

(ii)  $G_1$  &  $G_2$  are said to be vertex disjoint if they do not have any edge & vertex in common.

Eg:-  $G_1$ : (i) Edge disjoint: In vertex disjoint, the vertices of  $G_1$  &  $G_2$  are disjoint.



$G_1$ :  $\{a, b, c\}$

$G_2$ :  $\{c, d, e\}$

$G_2$ :  $\{d, e\}$

(ii) Vertex disjoint:

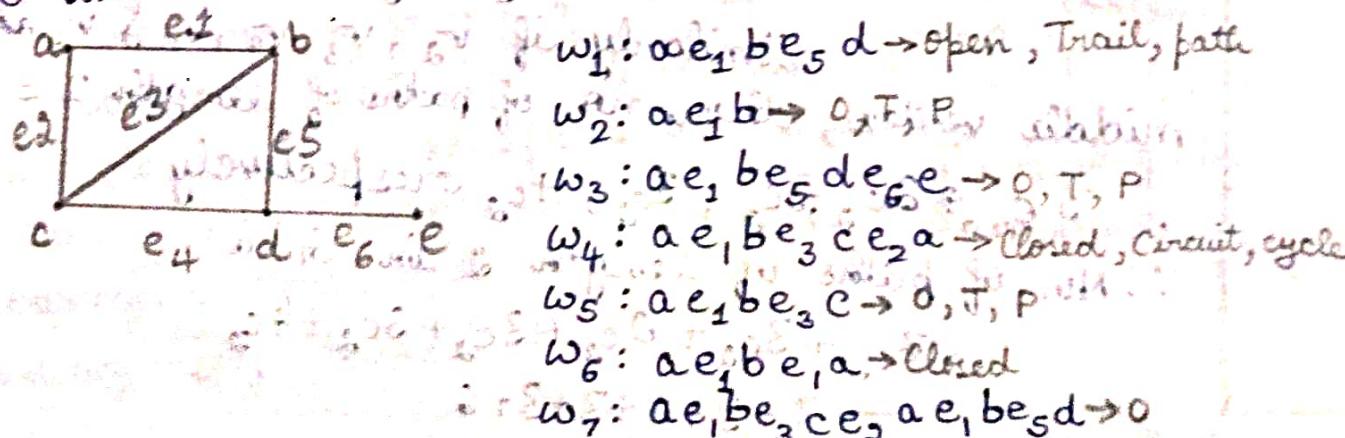
$G_1$ :  $\{a, b\}$

$G_2$ :  $\{c, d\}$

$G_2$ :  $\{b\}$

★ Walk & its classifications: Let  $G_1$  be a graph having at least one edge. In  $G_1$ , consider a finite alternating sequence of vertices & edges of the form  $v_i e_j v_{i+1} e_{j+1} v_{i+2} \dots$  which begins & ends with vertices & each edge in the sequence is incident on the vertices preceding & following it in sequence. Such a sequence is called a walk in  $G_1$ .

Eg:-  $G_1$ :  $a \xrightarrow{e_1} b \xrightarrow{e_2} c \xrightarrow{e_3} d \xrightarrow{e_4} e \xrightarrow{e_5} b \xrightarrow{e_6} a$   $w_1: a \xrightarrow{e_1} b \xrightarrow{e_5} d \rightarrow$  open, Trail, path



$w_2: a \xrightarrow{e_1} b \rightarrow 0, T, P$

$w_3: a \xrightarrow{e_1} b \xrightarrow{e_5} d \xrightarrow{e_6} e \rightarrow 0, T, P$

$w_4: a \xrightarrow{e_1} b \xrightarrow{e_3} c \xrightarrow{e_2} a \rightarrow$  closed, circuit, cycle

$w_5: a \xrightarrow{e_1} b \xrightarrow{e_3} c \rightarrow 0, T, P$

$w_6: a \xrightarrow{e_1} b \xrightarrow{e_5} a \rightarrow$  closed

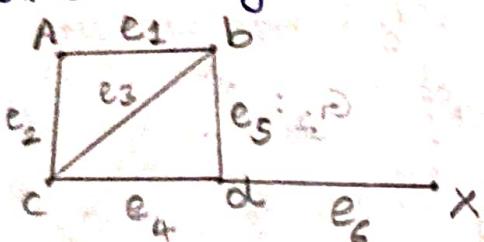
$w_7: a \xrightarrow{e_1} b \xrightarrow{e_3} c \xrightarrow{e_2} a \xrightarrow{e_5} d \rightarrow 0$

→ A walk that begins & ends at different vertex is called an open walk, otherwise a closed walk.

→ An open walk in which no edges repeat is called a trail.

- A closed walk in which no edges repeat, is called a circuit.
- A trail in which no vertex repeats is called a path.
- A circuit in which no vertex repeats (other than initial vertex where initial vertex does not appear as internal vertex) is called a cycle.

1a. Find all paths from vertex A to vertex X. Also specify their lengths.



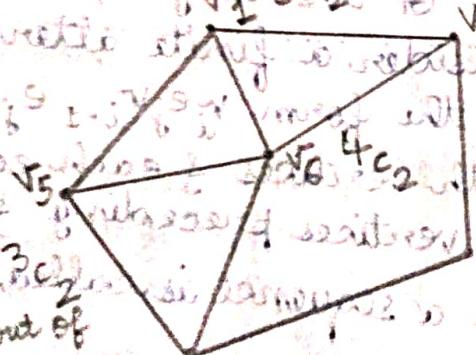
| Length |
|--------|
| 3      |
| 3      |
| 4      |
| 4      |

$P_1: A e_1 b e_5 d e_6 X$   
 $P_2: A e_2 c e_4 d e_6 X$   
 $P_3: A e_2 c e_3 b e_5 d e_6 X$   
 $P_4: A e_1 b e_3 c e_4 d e_6 X$

NOTE: Length: No. of edges in a walk.

2. Find all paths of length 2 in the given graph  $G$ .

(Fix the intermediate vertex)



∴ We are looking for paths of length 2, we shall fix the middle vertex.

If  $v_1$  is the middle vertex, then there are  $3c_2$  ways of getting paths of length 2.

Similarly if  $v_2, v_3, v_4, v_5$  &  $v_6$  are the middle vertex, then no. of paths of length 2 =

$3c_2, 3c_2, 3c_2, 3c_2, 4c_2$  respectively

∴ No. of paths of length 2 in  $G$  is

$$= 3c_2 + 3c_2 + 2c_2 + 3c_2 + 3c_2 + 4c_2$$

$$= 3 + 3 + 1 + 3 + 3 + 6$$

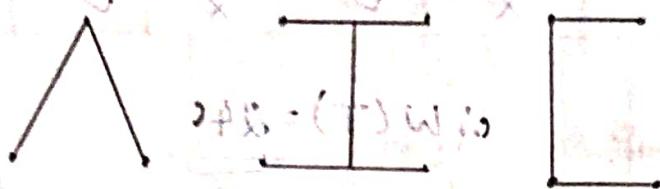
which is  $= 19$

★ Connected graph: If there is a path between two vertices  $a$  &  $b$ , then  $a$  &  $b$  are said to be connected.

A graph in which every two vertices are connected, is called connected graph.

★ Tree: A graph  $G_1$  is said to be tree if it is connected & has no cycles. Tree is denoted by  $T$ .

Eg:-



NOTE: i) In tree there is one & only one path between every pair of vertices.  
 ii) A tree with  $n$  vertices will have  $n-1$  edges.

★ Spanning Tree: Let  $G_1$  be a connected graph. A subgraph  $T$  of  $G_1$  is called spanning tree of  $G_1$  if (i)  $T$  is a tree & (ii)  $T$  contains all vertices of  $G_1$ .

Eg:-

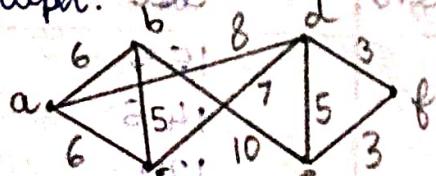


★ Minimal Spanning tree: Let  $G_1$  be a graph & suppose there is a positive real number associated with each edge of  $G_1$ , then  $G_1$  is called weighted graph. & the positive real number is called a weight.

Let  $G_1$  be a weighted graph &  $T$  be its spanning tree. Every branch of  $T$  is an edge of  $G_1$  which has some weight. The sum of weight of all the branches of  $T$  is called weight of  $T$  denoted by  $w(T)$ .

Suppose we consider all spanning trees of a connected weighted graph & find weights of every spanning tree. A spanning tree with least weight is minimal spanning tree. This tree is not unique.

I Use Kruskal's algorithm to find minimal spanning tree of weighted graph.



88 A  
87 A  
88 A

15.

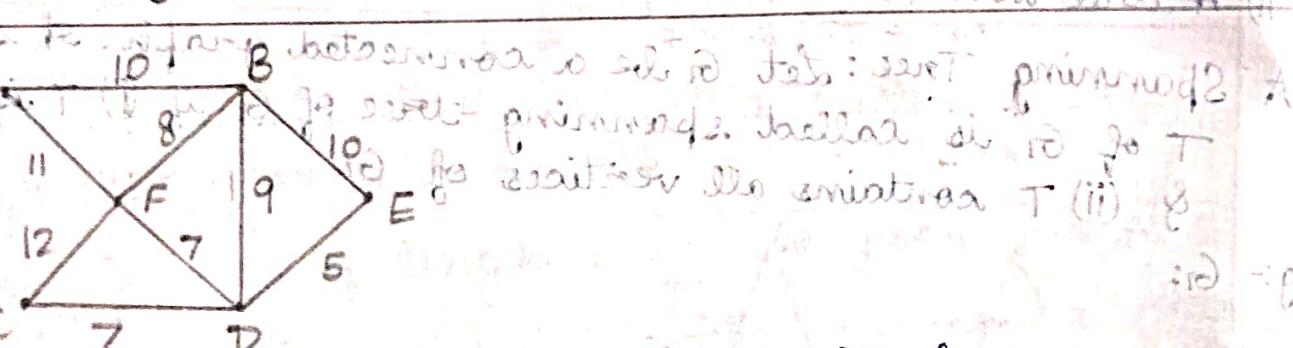
The graph has 6 vertices, so MST will have 5 edges

| Edge   | df | ef | bc | de | ab | ac | cd | ad |
|--------|----|----|----|----|----|----|----|----|
| Weight | 3  | 3  | 5  | 5  | 6  | 6  | 7  | 8  |
| Select | ✓  | ✓  | ✓  | x  | ✓  | x  | ✓  | -  |

$$T: \quad d \quad 3 \quad f \quad 3 \quad e \quad \therefore W(T) = 24$$

Ways selected after 7 edges plus 8 edge in parallel cost (i.e. 8 edges)

arrow for selecting edges follow vertices in, after selecting 8 edges



The graph has 6 vertices, so MST will have 5 edges

| Edge   | DE | CD | FD | FB | BD | BE | AB | AF | CF |
|--------|----|----|----|----|----|----|----|----|----|
| Weight | 5  | 7  | 7  | 8  | 9  | 10 | 10 | 11 | 12 |
| Select | ✓  | ✓  | ✓  | ✓  | x  | x  | ✓  | x  | x  |

Ways selected after 7 edges plus 8 edge in parallel cost (i.e. 8 edges)

arrow for selecting edges follow vertices in, after selecting 8 edges

arrow for selecting edges follow vertices in, after selecting 8 edges

arrow for selecting edges follow vertices in, after selecting 8 edges

arrow for selecting edges follow vertices in, after selecting 8 edges

arrow for selecting edges follow vertices in, after selecting 8 edges

arrow for selecting edges follow vertices in, after selecting 8 edges

3. Eight cities A, B, C, D, E, F, G, H are required to be connected by new railway network. Possible tracks & the cost involved to lay them are given below:

| Track between | cost |
|---------------|------|
| A & B         | 155  |
| A & D         | 145  |
| A & G         | 120  |

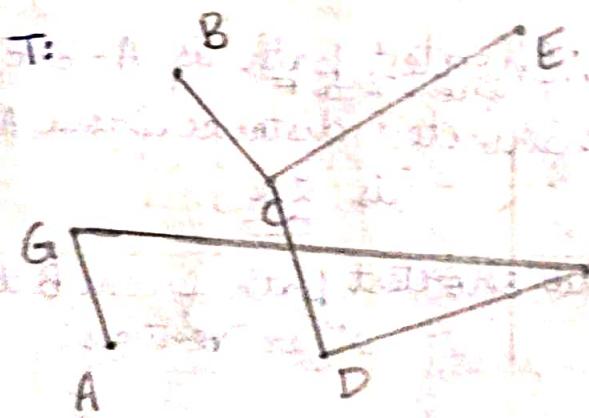
|    |       |     |
|----|-------|-----|
| 59 | B & C | 145 |
|    | C & D | 150 |
|    | C & E | 95  |
|    | D & F | 100 |
|    | E & F | 150 |
|    | F & G | 140 |
|    | F & H | 150 |
|    | G & H | 160 |

construct a railway network connecting 8 cities involving minimum cost.

| ans | Edge   | CE | DF  | AG  | FG  | AD  | BC  | CD  | EF  | FH  | AB  | GH  |
|-----|--------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     | Weight | 95 | 100 | 120 | 140 | 145 | 145 | 150 | 150 | 150 | 155 | 160 |
|     | Select | ✓  | ✓   | ✓   | ✓   | ✗   | ✓   | ✓   | ✗   | ✓   | ✗   | ✗   |

Railway tracks are 7.

$$w(T) = 900$$

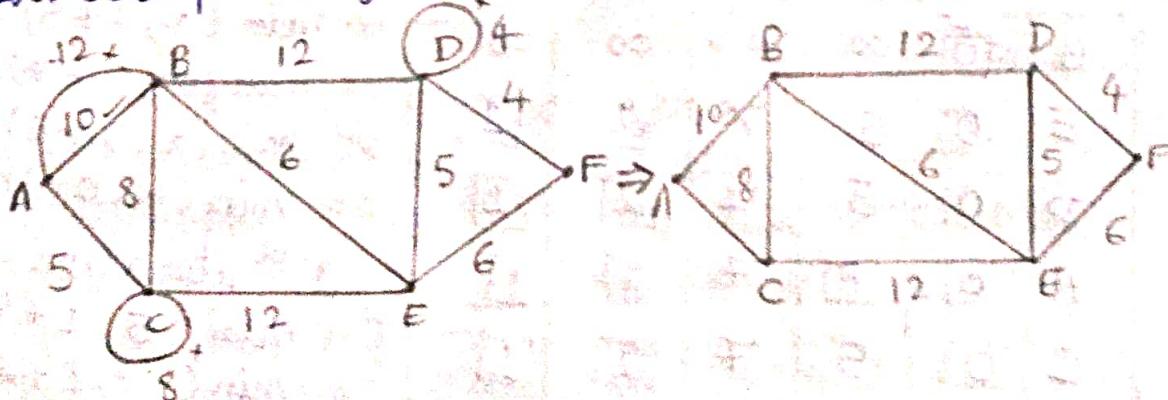


∴ Minimum cost is ₹900/-

★ Dijkstra's algorithm :-

$$\min (\text{temp label}; (\text{permanent label} + \text{edge wt}))$$

11. Find shortest path from A to F using Dijkstra's algorithm



ans

|   | A | B        | C        | D        | E        | F        |
|---|---|----------|----------|----------|----------|----------|
| A | 0 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| C | 0 | 10       | 5        | $\infty$ | $\infty$ | $\infty$ |
| B | 0 | 10       | 5        | $\infty$ | 17       | $\infty$ |
| E | 0 | 10       | 5        | 22       | 16       | $\infty$ |
| D | 0 | 10       | 5        | 21       | 16       | 22       |
| F | 0 | 10       | 5        | 21       | 16       | 22       |

1<sup>st</sup> iteration:-AB min ( $\infty, 0+10$ )

(PL=0)

AC min ( $\infty, 0+5$ )AD min ( $\infty, 0+\infty$ )AE min ( $\infty, 0+\infty$ )AF min ( $\infty, 0+\infty$ )2<sup>nd</sup> iteration (PL=5)

BG min (10, 5+8)

CD min ( $\infty, 5+\infty$ )CE min ( $\infty, 5+12$ )CF min ( $\infty, 5+\infty$ )3<sup>rd</sup> iteration (PL=10)BD min ( $\infty, 10+12$ )

BE min (17, 10+6)

BF min ( $\infty, 10+\infty$ )4<sup>th</sup> iteration (PL=16)

ED min (22, 16+5)

EF min ( $\infty, 16+6$ )

(- from A to D: A-B-E-D)

(- distance: 21)

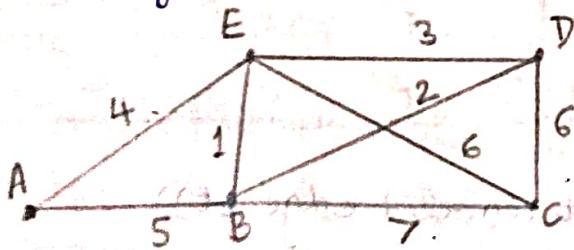
∴ Shortest path is A-B-E-F

from A to F

∴ Shortest distance from A to F

is 22

2. Use Dijkstra's algorithm to find shortest path from B to all other vertices.



ans

|   | B | A        | C        | D        | E        |
|---|---|----------|----------|----------|----------|
| B | 0 | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| E | 0 | 5        | 7        | 2        | 1        |
| D | 0 | 5        | 7        | 2        | 1        |
| A | 0 | 5        | 7        | 2        | 1        |
| C | 0 | 5        | 7        | 2        | 1        |

1<sup>st</sup> iteration:- (PL=0)BA min ( $\infty, 0+5$ )BC min ( $\infty, 0+7$ )BD min ( $\infty, 0+2$ )BE min ( $\infty, 0+1$ )2<sup>nd</sup> iteration:- (PL=1)

CA min (5, 1+4)

EC min (7, 1+6)

ED min (2, 1+3)

3<sup>rd</sup> iteration:-(PL=2)

DA min (5, 2 + ∞)

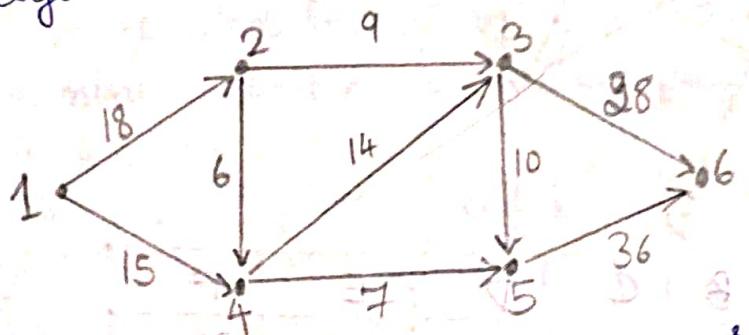
DC min (7, 2 + 6)

4<sup>th</sup> iteration:-(PL=5)

AC min (7, 5 + ∞)

|     | Shortest path | Shortest distance |
|-----|---------------|-------------------|
| B:E | B-E           | 1                 |
| B:D | B-D           | 2                 |
| B:C | B-C           | 7                 |
| B:A | B-A           | 5                 |

3. Find shortest path from 1 to all remaining vertices using Dijkstra's algorithm.

1<sup>st</sup> iteration:-(PL=0)

|   | 1 | 2  | 3  | 4  | 5  | 6  |
|---|---|----|----|----|----|----|
| 1 | 0 | ∞  | ∞  | ∞  | ∞  | ∞  |
| 4 | 0 | 18 | ∞  | 15 | ∞  | ∞  |
| 2 | 0 | 18 | 29 | 15 | 22 | ∞  |
| 5 | 0 | 18 | 27 | 15 | 22 | 58 |
| 3 | 0 | 18 | 27 | 15 | 22 | 55 |
| 6 | 0 | 18 | 27 | 15 | 22 | 55 |

1-2: min (∞, 0 + 18)

1-3: min (∞, 0 + ∞)

1-4: min (∞, 0 + 15)

1-5: min (∞, 0 + ∞)

1-6: min (∞, 0 + ∞)

2<sup>nd</sup> iteration:-(PL=15)

4-2: min (18, 15 + ∞)

4-3: min (∞, 15 + 14)

4-5: min (∞, 15 + 7)

4-6: min (∞, 15 + ∞)

3<sup>rd</sup> iteration:-(PL=18)

2-3: min (29, 18 + 9)

2-5: min (22, 18 + ∞)

2-6: min (∞, 18 + ∞)

4<sup>th</sup> iteration:-(PL=22)

5-3: min (27, 22 + ∞)

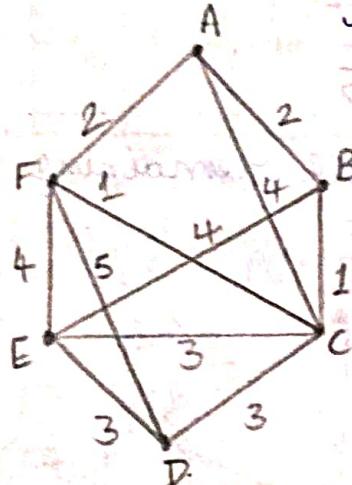
5-6: min (∞, 22 + 36)

5<sup>th</sup> iteration:-(PL=27)

3-6: min (58, 27 + 28)

| Vertices | Shortest path | Shortest distance |
|----------|---------------|-------------------|
| 1-2      | 1-2           | 18                |
| 1-3      | 1-2-3         | 27                |
| 1-4      | 1-4           | 15                |
| 1-5      | 1-4-5         | 22                |
| 1-6      | 1-2-3-6       | 55                |

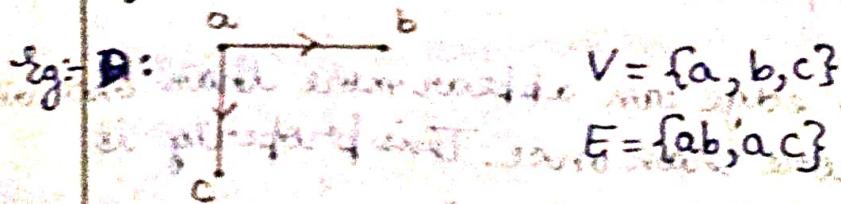
4. Find shortest path & shortest distance from A to all remaining vertices using Dijkstra's algorithm.



|   | A | B        | C        | D        | E        | F        |
|---|---|----------|----------|----------|----------|----------|
| A | 0 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| B | 0 | 2        | 4        | $\infty$ | $\infty$ | 2        |
| F | 0 | 2        | 3        | $\infty$ | 6        | 2        |
| C | 0 | 2        | 3        | 7        | 6        | 2        |
| D | 0 | 2        | 3        | 6        | 6        | 2        |
| E | 0 | 2        | 3        | 6        | 6        | 2        |

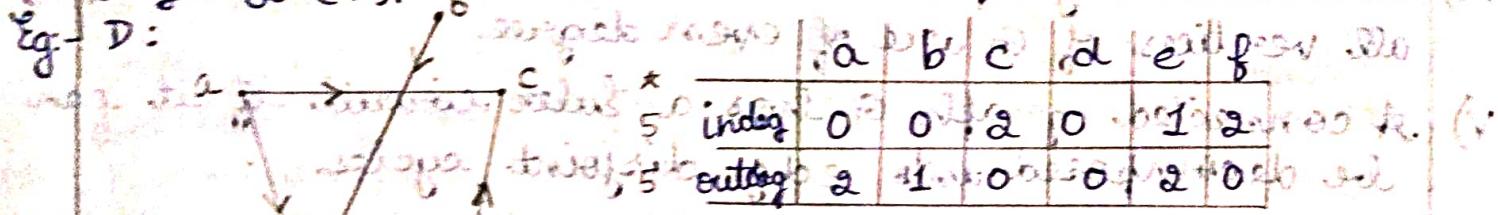
|     | Shortest path | Shortest distance |
|-----|---------------|-------------------|
| A:F | A-F           | 2                 |
| A:E | A-B-E         | 6                 |
| A:D | A-B-C-D       | 6                 |
| A:C | A-B-C         | 3                 |
| A:B | A-B           | 2                 |

★ **Directed graph (digraph):** A directed graph or digraph is a pair  $(V, E)$ , where  $V$  is a nonempty set &  $E$  is a set of ordered pairs of elements taken from the set  $V$ .



NOTE:- Vertex from where edge starts is called initial vertex & where it ends is called terminal vertex.

★ **Indegree & outdegree:** If  $v$  is a vertex of a digraph  $D$ , the no. of edges for which  $v$  is the initial vertex is called outdegree of  $v$  denoted by  $d^+(v)$  & no. of edges for which  $v$  is the terminal vertex is called indegree of  $v$  denoted by  $d^-(v)$ .

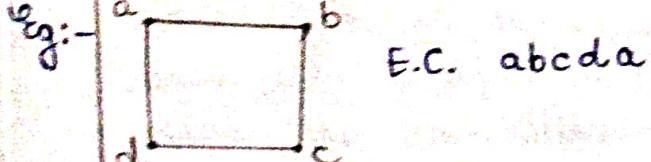
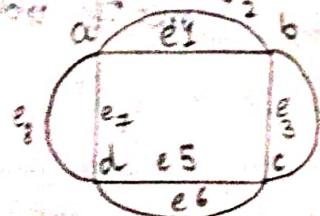


Indegree + Outdegree = Degree of a vertex

NOTE:-  $\text{Indegree of } v + \text{Outdegree of } v = \text{Degree of vertex } v$

2) Sum of all outdegrees of all vertices is equal to the sum of in degrees of all vertices, each sum being equal to number of edges in  $D$ .

★ **Eulerian graph or Euler graph:-** Consider a connected graph  $G$ . If there is a circuit in  $G$  that contains all edges of  $G$ , then that circuit is called Eulerian circuit in  $G$ . If there is a trail in  $G$  that contains all edges of  $G$ , then that trail is called a Eulerian trail in  $G$ .



E.C.  $a e_1 b e_3 c e_5 d e_7 a e_2 b e_4 c e_6 d e_8 a$

**NOTE:** If deg. of every vertex in  $G$  is even, then  $G$  has Euler circuit. (Ex) Read a circuit diagram. Always start at the starting point of the circuit to end at the same point.

Sq:-

E.T.  $de_4ae_3ce_2be_1a$

W. 12. alt. 11. 1/2

NOTE: i) In trail & circuit no edge can appear more than once but a vertex can appear more than once. This property is covered in Euler trail & Euler circuit.

ii) Since Euler circuit & Euler trail include all edges, they will include all vertices.

iii) A connected graph that contains a Euler circuit is called a Euler graph & that contains a Euler trail is called semi-Euler graph.

iv) A connected graph  $G$  has a Euler circuit if & only if all vertices of  $G$  are of even degree.

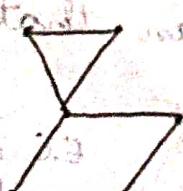
v) A connected graph  $G$  has a Euler circuit iff it can be decomposed into edge disjoint cycles.

1. Find all positive integers  $n \geq 2$  for which the complete graph  $K_n$  contains a Euler circuit. For what value of  $n$  does  $K_n$  have a Euler trail but not a Euler circuit?

ans 2  $K_n$  for  $n \geq 2$  has Euler circuit + for  $n = \text{odd}$  (deg. of every vertex is  $n-1$  which is equal to even).  $K_n$  has Euler trail for  $n=2$ .

2. (a) Does an Euler graph exist with even number of vertices & odd no. of edges?  
(b) Does Euler graph exist with odd number of vertices & even no. of edges?

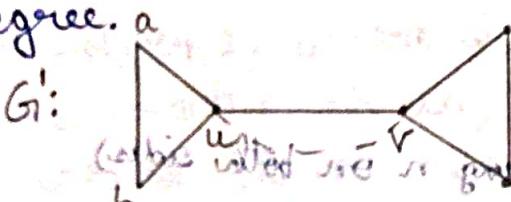
ans (a) Yes



OE (b) Yes. It is a well-known result that a graph is connected if and only if it has an Euler trail. For  $n=5$ , we can find an Euler trail starting from vertex  $v_1$  and ending at vertex  $v_5$ . The trail is  $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_1$ .

3. Show that a connected graph with exactly two vertices of odd degree has an Euler trail.

ans Let  $G$  be a <sup>connected</sup> graph where  $u$  &  $v$  are the only vertices with odd degree. a



Join  $u$  &  $v$  with an edge even if they are adjacent. The resultant graph is a Euler graph as we have a Euler circuit  $uabuvfevu$ . The new graph  $G'$  has a Euler circuit as degree of every vertex in  $G'$  is of even degree. Deletion of this edge results in a Euler trail  $uabuvfev$ .

★ Hamiltonian Cycle & Hamiltonian Path:

Let  $G$  be a connected graph. If there is a cycle in  $G$  that contains all vertices of  $G$ , then that cycle is called Hamiltonian cycle in  $G$ .

Eg:  $G$  is a square with vertices  $a, b, c, d$ . HP:  $a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$ ,  $a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$ . HC:  $a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$ .

NOTE: i) A Hamiltonian cycle in graph  $G$  of  $n$  vertices consist of exactly  $n$  edges. ii) Hamiltonian cycle includes <sup>all</sup> vertices of  $G$  does not imply it includes all edges of  $G$ . iii) Ore's Theorem: If in a simple connected graph with  $n$  vertices ( $n \geq 3$ ) the sum of degrees of every pair of non-adjacent vertices is greater than or equal to  $n$ , then the graph is Hamiltonian. [Hamiltonian  $\Rightarrow$  Graph which has Hamiltonian cycle].

\* iv) Dirac's theorem: If in a simple connected graph with  $n$  vertices ( $n \geq 3$ ) the degree of every vertex is greater than or equal to  $\frac{n}{2}$ , is Hamiltonian graph.

★ Problems:  $\star$  all vertices are adjacent, so using Dirac's theorem

1. Prove that a complete graph  $K_n$  where  $n \geq 3$  is a Hamiltonian graph.

ans degree of every vertex in  $K_n$  is  $n-1$ .  $\therefore$  (1)

Given  $n \geq 3$

$n > 2$

$2n > 2+n$  (Adding  $n$  on both sides)

$n-1 > \frac{n}{2}$

$\deg(v) > \frac{n}{2}$

$\therefore$  By Dirac's theorem,  $K_n$  is Hamiltonian.

\* 2. Let  $G$  be a simple graph with  $n$  vertices &  $m$  edges where  $m$  is at least 3. If  $m \geq \frac{(n-1)(n-2)}{2}$ , prove that  $G$  is Hamiltonian graph. Is the converse true?

ans Let  $G$  have  $n$  vertices &  $m$  edges ( $m \geq 3$ ). Let  $u$  &  $v$  be two non adjacent vertices in  $G$ .

To prove that:  $\deg u + \deg v \geq n$

Let  $\deg u = x$  &  $\deg v = y$ . Suppose we delete vertices  $u$  &  $v$  from  $G$ , edges incident on  $u$  &  $v$  also get deleted.

Number of edges in  $G'$  [graph obtained after deletion] is

$$\sqrt{5m - x - y}.$$

$$x + y = m - q$$

$$\deg u + \deg v \geq \frac{(n-1)(n-2)}{2} + 2 - \frac{(n-2)(n-3)}{2}$$

$\{G'\} \text{ has } q \text{ edges & } n-2 \text{ vertices, so } q \leq \frac{(n-2)(n-3)}{2}\}$

$$\geq \frac{n-2}{2} [m-1-n+3] + 2$$

$$\geq \frac{n-2}{2} [2] + 2$$

$$\deg u + \deg v \geq m - q$$

∴ By Ore's theorem,  $G_1$  is Hamiltonian graph.

Converse

$G_1$ :



$$n=5 \\ m=5$$

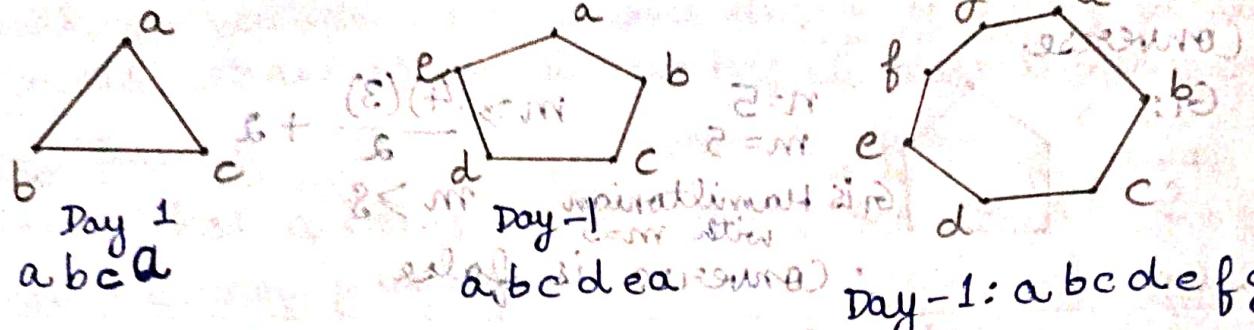
$$m \geq \frac{(4)(3)}{2} + 2$$

$G_1$  is Hamiltonian with  $m=5$   $m \geq 8$

∴ Converse is false

3. Suppose a new club has an odd number of members say  $n=2k+1$ , where  $k$  is a positive integer. These members meet each day for lunch at round table. They decide to sit in such a way that every member has different neighbors at each lunch. How many days can this arrangement last?

ans Let us consider a graph  $G_1$  in which a member  $x$  is represented by a vertex & possibility of his sitting next to another member  $y$  is represented by an edge between  $x$  &  $y$ . Since every member is allowed to sit next to any other member,  $G_1$  is a complete graph. Since there are  $n$  members, these are  $n$  vertices. Every sitting arrangement around a table is Hamiltonian cycle. On Day 1, they can sit in any order, this will form Hamiltonian cycle  $C_1$ . On second day, If they are to sit such that every member has different neighbour, we must find Hamiltonian cycle  $C_2$  which is edge disjoint with  $C_1$ . If the same arrangement has to be there on subsequent days, then each day we have to find Hamiltonian cycle which is edge disjoint with Hamiltonian cycle found earlier. No. of such cycles is  $\frac{n-1}{2}$ . Given  $n=2k+1$ , no. of such arrangements will be  $\frac{n-1}{2}$ .



Wednesday to 10th March 1980 a and the Day-21: a c e g / b d f a  
start. repetitive criticism ~~of~~ liberally Day-3: a d g c f b e  
and I am aware of Daniel's ~~of~~ what does team members  
friends taught now a <sup>d</sup> Day-21: this at this part  
will. Daniel does the ~~work~~ is not ~~the~~ effort and ~~work~~ <sup>of</sup>  
ac e b d a

## ★ Problems on connectedness:-

1. Prove that a connected graph  $G$  remains connected after removing an edge  $e$  from  $G$  iff  $e$  is a part of a cycle in  $G$ .

ans. Suppose  $e$  is part of some cycle  $C$  of  $G_1$ . Then the end vertices of  $e$  say 'a' & 'b' are connected by at least

two paths one of which is  $e$  & other is  $c - e$ .  
 Hence removal of  $e$  from  $G$  will not affect  $c$ .  
 So it is a bridge in  $G$  because even after removal of  $e$  there is no path between  $s$  &  $t$ .

connectivity of  $G$  because even after removal of  $e$ , the end vertices are connected by  $C - e$ . Conversely,

Suppose  $e$  is not a part of some cycle in  $G_1$ . Then end vertices of  $e$  are connected by almost one path. Hence, removal of  $e$  from  $G_1$  disconnects these end points.  $G_1 - e$  is a disconnected graph.

This implies  $G - e$  is a disconnected graph. If  $e$  is a part of cycle in  $G_1$ , then  $G - e$

If  $G - e$  is not a part of cycle in  $G$ , then  $G - e$  is disconnected.

$\Rightarrow$  if  $G - e$  is connected, then  $e$  has to be part of cycle in  $G$ .  $\therefore$   $e$  is a bridge.

2. If  $G_1$  is a simple graph in which degree of every vertex is atleast  $\frac{n-1}{2}$ , prove that  $G_1$  is connected.

ans | Take any two vertices  $u$  &  $v$  of  $G$ . They are either

adjacent or non-adjacent: If  $u$  &  $v$  are adjacent, then  $G_1$  is connected. Suppose  $u$  &  $v$  are non-adjacent then each will have atleast  $\frac{n-1}{2}$  neighbours.

Now if  $u$  &  $v$  together will have atleast  $n-1$  neighbours. But since  $G_1$  has  $n$  vertices &  $u$  &  $v$  are not adjacent, total no. of neighbours  $u$  &  $v$  have together is only  $n-2$ . Therefore atleast one vertex, say 'x', is neighbour of  $u$  &  $v$ . Hence there is an edge between  $u$  &  $x$ ,  $x$  &  $v$  i.e. there is a path between  $u$  &  $v$ . So,  $G_1$  is connected.

3. Let  $G_1$  be a disconnected graph of even order  $n$  with two components each of which is complete. Prove that  $G_1$  has minimum of  $\frac{n(n-2)}{2}$  edges.

Let there be two components of  $G_1$ . Let  $x$  be no. of vertices in  $G_1$  &  $n-x$  be no. of vertices in  $G_2$ .

Given  $G_1$  &  $G_2$  are complete graph.

$$\text{No. of edges in } G_1 = \frac{x(x-1)}{2}$$

$$\text{No. of edges in } G_2 = \frac{(n-x)(n-x-1)}{2}$$

$$\text{No. of edges in } G_1 = \frac{x(x-1)}{2} + \frac{(n-x)(n-x-1)}{2}$$

$$f(x) = \frac{x^2 - 2x + 2x^2 - n}{2}$$

$$f'(x) = \frac{-3x^2 + 4x}{2} = 0$$

$$-3x^2 + 4x = 0 \Rightarrow x = \frac{n}{2}$$

Now  $x = \frac{n}{2}$  is a local minimum.  $f''(x) = 2$

From  $f''(x) = 2 > 0$   $f(x)$  attains minimum at  $x = \frac{n}{2}$

Min. value of  $f(x)$  is  $\frac{n^2 - 2n}{2} + \frac{n^2 - n}{4} = \frac{n^2 - n}{4}$

$$= \frac{n^2}{4} - \frac{n^2 - 2n + 2n - n^2}{4} = \frac{n^2 - n}{4}$$