

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Semester: III

Branch: Common to all branches except CS, IS and AI&ML.

Duration: 3 hrs.

Course Code: 22MA3BSTFN

Max Marks: 100

Course: Transform Calculus, Fourier series and Numerical Techniques

Instruction: Answer any FIVE full questions, choosing one full question from each unit.

UNIT - I

1 a) Find $L \left[\frac{\cos at - \cos bt}{t} + t \sin at \right]$ 6

b) If a periodic function of period $2a$ is defined as

$$f(t) = \begin{cases} t, & \text{if } 0 \leq t \leq a \\ 2a - t, & \text{if } a \leq t \leq 2a \end{cases}$$
 7

then show that $L[f(t)] = \frac{1}{s^2} \tanh \left(\frac{as}{2} \right)$.

c) In a single loop LR circuit the current I builds up at the rate given by
 $L \frac{dI}{dt} + RI = E(t)$. Determine the current $I(t)$, when $L = 1\text{H}$, $R = 1\Omega$ and
 $E(t) = f(x) = \begin{cases} t, & 0 < t < 1 \\ 0, & t > 1 \end{cases}$ subject to the initial condition $I(0) = 0$. 7

OR

2 a) Find the inverse Laplace transform of the function $F(s) = \frac{6s+3}{s^4+5s^2+4}$. 6

b) Express the function

$$f(t) = \begin{cases} \cos t, & \text{if } 0 < t < \pi \\ 1, & \text{if } \pi < t < 2\pi \\ \sin t, & \text{if } t > 2\pi \end{cases}$$
 7

in terms of Unit step function and find its Laplace transform.

c) Solve $\frac{d^2y}{dt^2} + 6 \frac{dy}{dt} + 9y = 12t^2 e^{-3t}$, $y(0) = 0 = y'(0)$ by using Laplace transform technique. 7

UNIT - II

3 a) Obtain the complex form of Fourier series of the periodic function

$$f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$$
. 6

b) Obtain the Fourier series of $f(x) = \frac{\pi-x}{2}$ in $(0, 2\pi)$ and hence deduce that
 $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$. 7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

c) Obtain the Fourier series of y up to the terms containing first harmonic from the following table. 7

x	0	1	2	3	4	5	6
y	9	18	24	28	26	20	9

UNIT - III

4 a) Obtain the Fourier sine transform of the function 6

$$f(x) = \begin{cases} 4x, & \text{if } 0 < x < 1 \\ 4 - x, & \text{if } 1 < x < 4 \\ 0, & \text{if } x > 4 \end{cases}$$

b) Find the complex Fourier transform of $f(x) = e^{-a^2 x^2}$, $a > 0$. Hence deduce that $e^{-x^2/2}$ is self-reciprocal in respect of the complex Fourier transform. 7

c) By employing the convolution theorem, show that the inverse Fourier transform of $e^{-s^2/2}$ is $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. 7

UNIT - IV

5 a) Derive Crank-Nicolson formula for the solution of one-dimensional heat 6

$$\text{equation } \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}.$$

b) Solve $u_{tt} = 4u_{xx}$ with boundary conditions $u = 0$ at $x = 0$, $t > 0$ and $u = 0$ at $x = 4$, $t > 0$ and initial conditions $u = x(4 - x)$ and $\frac{\partial u}{\partial t} = 0$ at $t = 0$, $0 \leq x \leq 4$ taking $h = 1$ and $k = \frac{1}{2}$ up to $t = 2$. 7

c) Solve by Bredre-Schmidt method $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$, $0 \leq x \leq 1$ subjected to the conditions $u(0, t) = 0$, $u(1, t) = 0$ and $u(x, 0) = 100x(1 - x)$ taking $h = 0.25$ for three time steps. 7

UNIT - V

6 a) Derive an Euler's equation in the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$. 6

b) Find the Z - transform of the following: 7

$$(i) 3n - 4 \sin \frac{n\pi}{4} + 5a, \quad (ii) \cos \left(\frac{n\pi}{2} + \frac{\pi}{4} \right).$$

c) Find the inverse Z - transform of $\frac{3z^2 - 18z + 26}{(z-2)(z-3)(z-4)}$. 7

OR

7 a) Apply Z-transforms to solve the difference equation $u_{n+2} - 5u_{n+1} + 6u_n = 1$ with $u_0 = 0$, $u_1 = 1$. 6

b) Find the extremal of the functional $I = \int_0^{\pi/2} (y'^2 - y^2 + 4y \cos x) dx$ under the end conditions $y(0) = 0$; $y\left(\frac{\pi}{2}\right) = 0$. 7

c) A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is a Catenary. 7
