

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2023 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Common to all branches except CS, IS and AI&ML.

Duration: 3 hrs.

Course Code: 22MA3BSTFN

Max Marks: 100

Course: Transform Calculus, Fourier series and Numerical Techniques

Date: 10.04.2023

Instruction: Answer any FIVE full questions, choosing one full question from each unit.

UNIT - I

1 a) Find the Laplace transform of the following functions

$$(i) f(t) = te^{2t} \sin(3t) \quad (ii) f(t) = \frac{\sin(3t)}{t}$$

6

b) Find the Laplace transform of square wave function $f(t)$ of period a .

$$\text{where } f(t) = \begin{cases} 1 & \text{if } 0 < t < \frac{a}{2} \\ -1 & \text{if } \frac{a}{2} < t < a \end{cases}$$

7

c) Solve $y''' - 3y'' + 3y' - y = t^2 e^t$ given $y(0) = 1, y'(0) = 0, y''(0) = 1$ by the method of Laplace transform.

7

OR

2 a) Find the inverse Laplace transform of the following functions

$$(i) f(s) = \frac{2s-3}{s^2+4s+13} \quad (ii) f(s) = \frac{(s+1)^2}{(s+2)^4}$$

6

b) Express the function $f(t) = \begin{cases} t^2, & 0 < t < 2 \\ 4t, & 2 < t < 4 \\ 8, & t > 4 \end{cases}$ in terms of unit step function and

7

hence find its Laplace transform.

c) In an electrical circuit with e.m.f $E(t)$, inductance L_1 , resistance R and capacitance C the current i builds up at the rate given by

$$L_1 \frac{di}{dt} + Ri + \frac{1}{C} \int_0^t i(t) dt = E(t). \quad \text{Determine the current } i(t) \text{ when}$$

7

$L_1 = 0.1H, R = 3\Omega, C = 0.05F$ and $E(t) = 100[u(t-1) - u(t-2)]$ with the zero initial condition.

UNIT - II

3 a) Obtain the complex form of Fourier series for the periodic function

$$f(x) = \begin{cases} 1+2x & \text{in } -3 < x < 0 \\ 1-2x & \text{in } 0 < x < 3 \end{cases}$$

6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) Find the Fourier series of the periodic function $f(x) = \begin{cases} 1 + \frac{4x}{3} & \text{in } -\frac{3}{2} < x < 0 \\ 1 - \frac{4x}{3} & \text{in } 0 < x < \frac{3}{2} \end{cases}$

7

and hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$

c) The displacement y of a part of a mechanism is tabulated with corresponding angular movement θ of the crank. Express y as a Fourier series up to the first harmonic.

7

θ	0^0	60^0	120^0	180^0	240^0	300^0	360^0
y	7.9	7.2	3.6	0.5	0.9	6.8	7.9

UNIT - III

4 a) Find the Fourier transform of $f(x) = \begin{cases} 1 - |x| & \text{when } |x| \leq 1 \\ 0 & \text{when } |x| > 1 \end{cases}$

6

b) Find the inverse Fourier sine transform of $f_s(s) = \frac{e^{-as}}{s}$, $a > 0$

7

c) Apply the convolution theorem to find the inverse Fourier transform of $e^{-s^2/2}$

7

if the Fourier transform of $e^{-a^2 x^2}$ is $\frac{\sqrt{\pi}}{a} e^{-s^2/4a^2}$.

UNIT - IV

5 a) Derive Crank-Nicolson formula for the solution of one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$.

6

b) Solve the initial boundary value problem $u_t = 4u_{xx}$ subject to the conditions

7

$u(0, t) = 0 = u(8, t)$, $t > 0$ and $u(x, 0) = 4x - \frac{x^2}{2}$, $0 \leq x \leq 8$. Carryout the computations up to one-time level by taking $h = 1$ and $k = 0.1$.

c) Apply explicit three level formula to solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to the boundary conditions $u(0, t) = u(1, t) = 0$, $t \geq 0$, initial

7

conditions $u(x, 0) = \begin{cases} \frac{5x}{3} & \text{for } 0 < x \leq \frac{3}{5} \\ \frac{5(1-x)}{2} & \text{for } \frac{3}{5} < x < 1 \end{cases}$ and $u_t(x, 0) = 0$ up to two

time levels taking $h = \frac{1}{5}$ and $k = \frac{1}{10}$.

UNIT - V

6 a) Derive an Euler's equation in the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.

6

b) Find the extremal of the functional $\int_0^{\frac{\pi}{2}} (y'^2 - y^2 + 4y \cos x) dx$ with $y(0) = y(\frac{\pi}{2}) = 0$.

7

c) Find the Z-transform of $\cos(n\theta)$ and $\sin(n\theta)$. Hence evaluate $Z_T\left(4\sin\frac{n\pi}{4}\right)$. 7

OR

7 a) Find the inverse Z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$ 6

b) Show that the shape of the heavy cable which hangs freely under gravity between two fixed points is a catenary. 7

c) Apply Z-transform to solve the difference equation $u_{n+2} + 2u_{n+1} + u_n = n$ given $u_0 = 0, u_1 = 0$. 7
