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Instruction:   Answer any FIVE full questions, choosing one full question from each unit. 
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  UNIT - I  

1 a) Find the Laplace transform of the following functions 

(i)  2( ) sin 3tf t te t      (ii)   
sin(3 )

( )
t

f t
t

     
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 b) Find the Laplace transform of square wave function ( )f t of period a . 

where 
2

2

1 0
( )

1

a

a

if t
f t

if t a

 
 

  
.  
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 c) Solve 2"' 3 " 3 ' ty y y y t e     given (0) 1, '(0) 0, "(0) 1y y y    by the 

method of Laplace transform. 
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  OR 
 

2 a) Find the inverse Laplace transform of the following functions 

(i) 
2

2 3
( )

4 13

s
f s

s s




 
     (ii) 

 

 

2

4

1
( )

2

s
f s

s





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 b) 

Express the function 

2 , 0 2

( ) 4 , 2 4

8, 4

t t

f t t t

t

  


  
 

 in terms of unit step function and 

hence find its Laplace transform. 
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 c) In an electrical circuit with e.m.f E(t), inductance L1, resistance R and 

capacitance C the current i builds up at the rate given by 

1

0

1
( ) ( )

t
di

L Ri i t dt E t
dt C
   . Determine the current i(t) when 

1 0.1 ,  3 ,  0.05  andL H R C F        ( ) 10  0 1 2E t u t u t       with the 

zero initial condition.  
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  UNIT - II 
 

3 a) Obtain the complex form of Fourier series for the periodic function 

1 2 in 3 0
( )

1 2 in 0 3

x x
f x

x x

   
 

  
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U.S.N.           



 

 

  

b) Find the Fourier series of the periodic function 
4 3
3 2

4 3
3 2

1 in 0
( )

1 in 0

x

x

x
f x

x

  
 

  

 

and hence deduce that 
2

2 2 2

1 1 1
..........

1 3 5 8


     
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 c) The displacement y of a part of a mechanism is tabulated with corresponding 

angular movement  of the crank. Express y as a Fourier series up to the first 

harmonic. 


 

00 600 1200 1800 2400 3000 3600 

y 7.9 7.2 3.6 0.5 0.9 6.8 7.9 
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  UNIT - III 
 

 

4 

 

a) Find the Fourier transform of 
1 when 1

( )
0 when 1

x x
f x

x

  
 


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b) Find the inverse Fourier sine transform of ( ) , 0
a s

s

e
f s a

s



   

 

7 

 
 

c) Apply the convolution theorem to find the inverse Fourier transform of 
2 2se  

if the Fourier transform of 
2 2a xe  is 

2 24s ae
a

 
. 
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  UNIT - IV 
 

5 a) Derive Crank-Nicolson formula for the solution of one-dimensional heat 

equation 
2

2

2

u u
c

t x

 


 
. 
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 b) Solve the initial boundary value problem 4t xxu u subject to the conditions 

   0, 0 8, , 0u t u t t   and  
2

,0 4 ,0 8.
2

x
u x x x     Carryout the 

computations up to one-time level by taking 1 and 0.1h k  . 
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c) Apply explicit three level formula to solve the wave equation 
2 2

2 2
4

u u

t x

 


   
subject to the boundary conditions 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,  𝑡 ≥ 0, initial 

conditions  

5 3
0

3 5
,0

5(1 ) 3
1

2 5

x
for x

u x
x

for x


 

 
  



 and  ,0 0 tu x  up to  two 

time levels taking 
1 1

 and k
5 10

h   . 
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  UNIT - V 
 

 

6 
 

a) Derive an Euler’s equation in the form 0.
f d f

y dx y

  
  

  
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b) Find the extremal of the functional  
2

2 2

0

4 cosy y y x dx



    with 

2
(0) ( ) 0y y   . 
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c) Find the Z-transform of )cos( n  and )sin( n . Hence evaluate 4sin
4

T

n
Z

 
 
 

. 
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  OR 
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a) Find the inverse Z-transform of 
  

22 3

2 4

z z

z z



 
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 b) Show that the shape of the heavy cable which hangs freely under gravity 

between two fixed points is a catenary. 
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 c) Apply Z-transform to solve the difference equation 
2 12n n nu u u n    given 

0 10, 0u u  . 

 

7 

 

                ****** 


