

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: All Branches (Except CSE stream)

Course Code: 22MA3BSTFN

Course: Transform Calculus, Fourier series and Numerical Techniques

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Find the Laplace transform of $2t + \frac{\cos 2t - \cos 3t}{t} + t \sin t$.	CO1	PO1	6
	b)	Find the Laplace transform of the full wave rectifier $f(t) = E \sin \omega t$, $0 < t < \frac{\pi}{\omega}$ having period $\frac{\pi}{\omega}$.	CO2	PO1	7
	c)	Solve the initial value problem $\frac{d^2y}{dt^2} + 4 \frac{dy}{dt} + 4y = e^{-t}$, $y(0) = y'(0) = 0$ by using Laplace transform.	CO1	PO1	7
OR					
2	a)	Find the Laplace transform of $te^{2t} - \frac{2 \sin 3t}{t}$.	CO1	PO1	6
	b)	Express the function $f(t) = \begin{cases} 1, & 0 < t \leq 1 \\ t, & 1 < t \leq 2 \\ t^2, & t > 2 \end{cases}$ in terms of unit step function and hence find its Laplace transform.	CO1	PO1	7
	c)	Find the inverse Laplace transform of the function $\frac{(s+2)e^{-s}}{(s+1)^4}$.	CO1	PO1	7
UNIT - II					
3	a)	Find the Fourier series of $f(x) = e^{-x}$ over the interval $(0, 2\pi)$.	CO1	PO1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Obtain the Fourier series for the function $f(x) = \begin{cases} \pi x & 0 \leq x \leq 1 \\ \pi(2-x) & 1 \leq x \leq 2 \end{cases}$ and hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{8}.$	CO1	PO1	7														
	c)	Obtain the Fourier series expansion up to first harmonic for the given data: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>x</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>y</td><td>4</td><td>8</td><td>15</td><td>7</td><td>6</td><td>2</td></tr> </table>	x	0	1	2	3	4	5	y	4	8	15	7	6	2	CO1	PO1	7
x	0	1	2	3	4	5													
y	4	8	15	7	6	2													
UNIT - III																			
4	a)	Find the Fourier sine transform of $\frac{e^{-ax}}{x}$.	CO1	PO1	6														
	b)	Solve the integral equation $\int_0^{\infty} f(\theta) \cos a\theta d\theta = \begin{cases} 1-a & 0 \leq a \leq 1 \\ 0 & a > 1 \end{cases}$ and hence evaluate $\int_0^{\infty} \frac{\sin^2 t}{t^2} dt$.	CO1	PO1	7														
	c)	Apply convolution theorem to show that $F^{-1}\left(e^{-s^2/2}\right) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$	CO1	PO1	7														
UNIT - IV																			
5	a)	Derive Schmidt explicit formula for the solution of one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$.	CO1	PO1	6														
	b)	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x,0) = \sin \pi x$, $0 \leq x \leq 1$, $u(0,t) = 0 = u(1,t)$. Carry out the computations for two-time levels taking $h = \frac{1}{3}$ and $k = \frac{1}{36}$.	CO1	PO1	7														
	c)	The transverse displacement u of a point at a distance x from one end at any time t of a vibrating string satisfies the equation $u_{tt} = 4u_{xx}$ subject to the conditions $u(0,t) = 0$, $u(4,t) = 0$, $t \geq 0$, $u(x,0) = x(4-x)$ $0 \leq x \leq 4$ and $u_t(x,0) = 0$. Solve this equation numerically up to two-time levels, with $h = 1$ and $k = 0.5$.	CO2	PO1	7														
UNIT - V																			
6	a)	Find the extremal of the functional $\int_{x_1}^{x_2} (y'^2 - y^2 + 2y \sec x) dx$.	CO1	PO1	6														

	b)	Find the Z-transform of $2n + \sin\left(\frac{n\pi}{4}\right) + 1$.	CO1	PO1	7
	c)	Solve the difference equation $y_{n+2} - 4y_{n+1} + 3y_n = 1$ with $y_0 = 0$, $y_1 = 1$.	CO1	PO1	7
		OR			
7	a)	A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is a catenary.	CO2	PO1	6
	b)	Show that the equation of the curve joining the points $(1,0)$ and $(2,1)$ for which $I = \int_1^2 \frac{\sqrt{1+y'^2}}{x} dx$ is an extremum is a circle.	CO2	PO1	7
	c)	Find the inverse Z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$.	CO1	PO1	7
