

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2023 Semester End Make-Up Examinations

Programme: B.E.

Semester: III

Branch: Common to all branches except CS, IS and AI&ML.

Duration: 3 hrs.

Course Code: 22MA3BSTFN

Max Marks: 100

Course: Transform Calculus, Fourier series and Numerical Techniques

Date: 16.08.2023

Instruction: Answer any FIVE full questions, choosing one full question from each unit.

UNIT - I

1 a) Find $L\left[2' + \frac{\cos 2t - \cos 3t}{t} + t \sin t\right]$ 6

b) Find the inverse Laplace transform of $\frac{4s+5}{(s+1)^2(s+2)}$ 7

c) Express the function $f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \cos 2t, & \pi < t < 2\pi \\ \cos 3t, & t > 2\pi \end{cases}$ in terms of unit step function 7
and hence find its Laplace transform.

OR

2 a) Find the inverse Laplace transforms of (i) $\frac{2s-1}{s^2+4s+29}$ (ii) $\frac{e^{-4s}}{s^2(s+3)}$ 6

b) If $f(t) = \begin{cases} a, & 0 \leq t \leq a \\ -a, & a < t \leq 2a \end{cases}$ and $f(t+2a) = f(t)$, show that 7

$$L[f(t)] = \frac{a}{s} \tanh\left(\frac{as}{2}\right).$$

c) Apply Laplace transform to solve the differential equation 7

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = 5e^{2t}$$
 subjected to the conditions $y(0) = 2, y'(0) = 1$.

UNIT - II

3 a) Obtain the Fourier series of the periodic function $f(x) = x$ in $(-\pi, \pi)$ and 6
hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

b) Obtain the complex form of Fourier series of the periodic function $f(x) = e^{-x}$ 7
in $(-1, 1)$.

c) Obtain the Fourier series neglecting the terms higher than first harmonics for the given data.

x°	0	45	90	135	180	225	270	315
y	2	1.5	1	0.5	0	0.5	1	1.5

7

UNIT - III

4 a) Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, & |x| \leq a \\ 0, & |x| > a \end{cases}$.

6

b) Find the inverse Fourier cosine transform of the function

$$f_c(s) = \begin{cases} 4s & 0 < s < 1 \\ 4-s & 1 < s < 4 \\ 0 & s > 4 \end{cases}$$

7

c) Apply convolution theorem to find the inverse Fourier transform of $\frac{i}{(1+s^2)^2}$ given that $\frac{2}{1+s^2}$ is the Fourier transform of $e^{-|x|}$.

7

UNIT - IV

5 a) Derive Crank-Nicolson formula for the solution of one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$.

6

b) Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x,0) = \sin \pi x$, $0 \leq x \leq 1$, $u(0,t) = u(1,t) = 0$ using Schmidt method taking $\mathbf{h} = \mathbf{0.2}$ and $\alpha = \frac{1}{2}$.

7

c) Find the solution of initial boundary value problem $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, $0 \leq x \leq 1$, subject to the initial conditions $u(x,0) = \sin \pi x$, $u_t(x,0) = 0$ $0 \leq x \leq 1$ and the boundary conditions $u(0,t) = 0$, $u(1,t) = 0$, $t > 0$ by taking $h = 0.2$ and $k = 0.2$.

7

UNIT - V

6 a) Derive Euler's equation in the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.

6

b) Find the extremal of the functional $\int_0^{\frac{\pi}{2}} (y'^2 - y^2 + 4y \cos x) dx$ with $y(0) = y(\frac{\pi}{2}) = 0$.

7

c) Solve $u_{n+2} + 6u_{n+1} + 9u_n = 2^n$ with $u_0 = 0$, $u_1 = 0$ using Z-transforms.

7

OR

7 a) Find the Z-transform of i) $\cosh n\theta$ ii) $k^2 n^3$.

6

b) Find the inverse Z-transform of $\frac{3z^2 + 2z}{(5z-1)(5z+2)}$.

7

c) A uniform chain of fixed length l is freely suspended from two points so as to hang at rest under the action of gravity. Determine the shape of the curve.

7
