

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: III

Duration: 3 hrs.

Course Code / Branch:

**23MA3BSTFN (Common to all branches except Civil Engg.
And CS-Stream)**

Max Marks: 100

22MA3BSTFN (Common to all branches except CS-Stream)

**Course: Transform Calculus, Fourier Series and Numerical
Techniques**

Instructions: 1. All questions have internal choices.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	<p>Find the Laplace transform of the following functions</p> <p>(i) $f(t) = te^{-3t} \cos(2t)$ (ii) $f(t) = \int_0^t \frac{1-e^{-t}}{t} dt$.</p>	1	1	6
	b)	<p>Express the given piecewise continuous function</p> $f(t) = \begin{cases} 2t^2, & 0 \leq t < 3 \\ t+4, & 3 \leq t < 5 \\ 9, & t \geq 5 \end{cases}$ <p>in terms of the unit step function and hence find its Laplace transform.</p>	1	1	7
	c)	<p>Apply Laplace transform techniques to solve the differential equation $\frac{d^2x}{dt^2} + 9x = \cos(2t)$ if $x(0) = 1$ and $x(\pi/2) = -1$.</p>	1	1	7
OR					
2	a)	<p>Find the inverse Laplace transform of the following functions</p> <p>(i) $F(s) = \frac{s+3}{s^2-10s+29}$ (ii) $F(s) = \frac{1}{4s+1} + \frac{1}{5s-2}$.</p>	1	1	6
	b)	<p>If $f(t) = \begin{cases} 1+t, & 0 \leq t < 1 \\ 3-t, & 1 \leq t < 2 \end{cases}$ is a periodic function of period 2, then show that $L[f(t)] = \frac{1}{s} + \frac{1}{s^2} \tanh\left(\frac{s}{2}\right)$.</p>	1	1	7
	c)	<p>Using Laplace transform, solve the differential equation $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 4$ given $y(0) = 2$ and $y'(0) = 3$.</p>	1	1	7
UNIT - 2					
3	a)	<p>Obtain the Fourier series for the periodic function $f(x)$ over the interval $(-\pi, \pi)$ where $f(x) = \begin{cases} x - \pi/2 & -\pi < x < 0 \\ x + \pi/2 & 0 < x < \pi \end{cases}$.</p>	1	1	6
	b)	<p>Obtain the Fourier series for $f(x) = e^{-ax}$, $a > 0$, over the interval $(0, 2\pi)$ with $f(x + 2\pi) = f(x)$.</p>	1	1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Find the complex Fourier series for the function $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$ with $f(x + 2\pi) = f(x)$ where k is a real constant, over the interval $(-\pi, \pi)$.	1	1	7														
		OR																	
4	a)	Obtain the Fourier series for the periodic function $f(x) = x \cos\left(\frac{\pi x}{l}\right)$ over $(-l, l)$.	1	1	6														
	b)	Obtain the Fourier series of the periodic function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \leq x \leq 0 \\ 1 - \frac{2x}{\pi}, & 0 \leq x \leq \pi \end{cases}$.	1	1	7														
	c)	The following values of y give the displacement in inches of a certain machine part for the rotation x of the flywheel. Expand y in the form of a Fourier series up to the first harmonic. <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>0°</td><td>60°</td><td>120°</td><td>180°</td><td>240°</td><td>300°</td></tr> <tr> <td>y</td><td>0</td><td>9.2</td><td>14.4</td><td>17.8</td><td>17.3</td><td>11.7</td></tr> </table>	x	0°	60°	120°	180°	240°	300°	y	0	9.2	14.4	17.8	17.3	11.7	1	1	7
x	0°	60°	120°	180°	240°	300°													
y	0	9.2	14.4	17.8	17.3	11.7													
		UNIT - 3																	
5	a)	Find the Fourier sine transform of $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2-x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$.	1	1	6														
	b)	Find the Fourier transform of $e^{-a^2x^2}$, $a > 0$.	1	1	7														
	c)	Apply Fourier transform technique and solve the integral equation $\int_0^\infty f(x) \cos ax dx = \begin{cases} 1 - \alpha, & 0 \leq \alpha \leq 1 \\ 0, & \alpha > 1 \end{cases}$.	1	1	7														
		OR																	
6	a)	Find the Fourier cosine transform of the following functions (i) $f(x) = \begin{cases} x, & 0 < x < a \\ 0, & \text{otherwise} \end{cases}$ (ii) $f(x) = e^{-ax}$.	1	1	6														
	b)	Find the Fourier transform of $f(x) = \begin{cases} 1 - x , & \text{for } x \leq 1 \\ 0, & \text{for } x > 1 \end{cases}$.	1	1	7														
	c)	By employing the convolution theorem, show that inverse Fourier transform of $e^{-\frac{x^2}{2}}$ is $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. Given that $F\left[e^{-\frac{x^2}{4}}\right] = \frac{e^{-x^2}}{\sqrt{\pi}}$.	1	1	7														
		UNIT - 4																	
7	a)	Derive the finite difference formula to solve one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.	1	1	6														
	b)	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ using Schmidt method with the conditions $u(x, 0) = \sin(\pi x)$, $0 \leq x \leq 1$, $u(0, t) = 0$, $u(1, t) = 0$. Carryout the computations for two-time levels taking $h = \frac{1}{3}$ and $k = \frac{1}{36}$.	1	1	7														
	c)	Evaluate the pivotal values of the equation $u_{tt} = 16u_{xx}$ taking $h = 1$ and $k = 0.25$ up to $t = 0.5$. The boundary conditions are $u(0, t) = u(5, t) = 0$ and initial conditions $u(x, 0) = x^2(5 - x)$ and $\frac{\partial u}{\partial t}(x, 0) = 0$.	1	1	7														
		OR																	

	8	a)	Derive the Bembre-Schmidt formula to solve numerically the one-dimensional heat equation $u_t = c^2 u_{xx}$.	1	1	6
		b)	Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ with the initial conditions $u(x, 0) = \sin(\pi x)$, $0 \leq x \leq 1$, $u_t(x, 0) = 0$, $0 \leq x \leq 1$ and the boundary conditions $u(0, t) = u(1, t) = 0$. Carryout the computations up to two time levels taking $h = 0.25$ and $k = 0.5$.	1	1	7
		c)	Find the numerical solution of the parabolic equation $3u_t = u_{xx}$ when $u(0, t) = 0$, $u(4, t) = 0$ and $u(x, 0) = x(4 - x)$ by taking $h = 1$ and $k = 1$. Carryout the computations up to two-time levels.	1	1	7
UNIT - 5						
9	a)		Show that a necessary condition for $I = \int_{x_1}^{x_2} f(x, y, y') dx$ to be an extremum is that $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.	1	1	6
	b)		Find the extremal of the functional $\int_0^{\pi/2} (y^2 - y'^2 - 2y \sin x) dx$ with $y(0) = y\left(\frac{\pi}{2}\right) = 0$.	1	1	7
	c)		Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$ using Z-transform.	1	1	7
OR						
10	a)		Show that a heavy cable that hangs freely under gravity between two fixed points is in the shape of a catenary.	1	1	6
	b)		Find the extremal of the functional $\int_0^{\pi/2} (y'^2 - y^2 + 2xy) dx$ with $y(0) = y\left(\frac{\pi}{2}\right) = 0$.	1	1	7
	c)		Solve the difference equation $u_{n+2} - 3u_{n+1} + 2u_n = 0$ with $u_0 = 0$, $u_1 = 1$ using Z-transform.	1	1	7
