

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Course Code / Branch:

Duration: 3 hrs.

23MA3BSTFN (Common to all branches except Civil Engg. And CS-Stream)

22MA3BSTFN (Common to all branches except CS-Stream)

Max Marks: 100

Course: Transform Calculus, Fourier Series and Numerical Techniques

Instructions: 1. All questions have internal choices.

2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Evaluate (i) $L[e^{-t}t \cos 3t]$ (ii) $L\left[t \int_0^t \frac{e^{-s} \sin s}{s} ds\right]$.	1	1	6
	b)	Obtain the Laplace transform of a square wave function of period $2a$ given by $f(t) = \begin{cases} k, & 0 < t < a \\ -k, & a < t < 2a \end{cases}$.	1	1	7
	c)	Solve the initial value problem $y'' - 2y' - 8y = 0$, $y(0) = 3$ and $y'(0) = 6$ by using Laplace transform.	1	1	7
OR					
2	a)	Find the Laplace transform of $\left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3$.	1	1	6
	b)	Evaluate (i) $L^{-1}\left\{\frac{3s+7}{s^2-2s-3}\right\}$ (ii) $L^{-1}\left\{\frac{1}{4s-1} + \frac{1}{s^2-25}\right\}$	1	1	7
	c)	Express the function $f(t) = \begin{cases} \sin t, & 0 < t \leq \pi \\ \sin 2t, & \pi < t \leq 2\pi \\ \sin 3t, & t > 2\pi \end{cases}$ in terms of unit step function and hence find its Laplace transform.	1	1	7
UNIT - 2					
3	a)	Obtain the complex Fourier series of the function $f(x) = e^{ax}$ over the interval $(-\pi, \pi)$.	1	1	6
	b)	Obtain the Fourier series expansion for the periodic function $f(x) = \begin{cases} 1 + \frac{4x}{3} & -\frac{3}{2} < x < 0 \\ 1 - \frac{4x}{3} & 0 < x < \frac{3}{2} \end{cases}$.	1	1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>The following table gives the variations of a periodic current A over a period T. Show that there is a constant part of 0.75amp in the current A and obtain the amplitude of the first harmonic.</p> <table border="1"> <tr> <td>t(secs)</td><td>0</td><td>T/6</td><td>T/3</td><td>T/2</td><td>2T/3</td><td>5T/6</td><td>T</td></tr> <tr> <td>A(amp)</td><td>1.98</td><td>1.30</td><td>1.05</td><td>1.30</td><td>-0.88</td><td>-0.25</td><td>1.98</td></tr> </table>	t(secs)	0	T/6	T/3	T/2	2T/3	5T/6	T	A(amp)	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98	1	1	7
t(secs)	0	T/6	T/3	T/2	2T/3	5T/6	T														
A(amp)	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98														
		OR																			
4	a)	Obtain the Fourier series expansion of $f(x) = \frac{(\pi - x)}{2}$ in $-\pi < x < \pi$ with $f(x + 2\pi) = f(x)$.			6																
	b)	Obtain the Fourier series expansion of the periodic function $f(x) = x(2l - x)$ in $(0, 2l)$.			7																
	c)	Expand y as a Fourier series up to the first harmonic using the given data	<table border="1"> <tr> <td>x :</td> <td>0</td> <td>60</td> <td>120</td> <td>180</td> <td>240</td> <td>300</td> <td>360</td> </tr> <tr> <td>y :</td> <td>7.9</td> <td>7.2</td> <td>3.6</td> <td>0.5</td> <td>0.9</td> <td>6.8</td> <td>7.9</td> </tr> </table>	x :	0	60	120	180	240	300	360	y :	7.9	7.2	3.6	0.5	0.9	6.8	7.9		7
x :	0	60	120	180	240	300	360														
y :	7.9	7.2	3.6	0.5	0.9	6.8	7.9														
		UNIT - 3																			
5	a)	Find the Fourier Transform of the function $f(x) = e^{-a x }$, $a > 0$.	1	1	6																
	b)	Find the Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$, $a > 0$.	1	1	7																
	c)	Using Fourier transform technique, solve the integral equation $\int_0^{\infty} f(\theta) \cos(\alpha\theta) d\theta = \begin{cases} 1 - \alpha, & 0 \leq \alpha \leq 1 \\ 0, & \alpha > 1 \end{cases}$.	1	1	7																
		OR																			
6	a)	Obtain the Fourier cosine and sine transforms of $f(x) = e^{-ax}$.			6																
	b)	Find the inverse Fourier transform of $F(s) = e^{-s^2}$.			7																
	c)	By employing the convolution theorem, show that inverse Fourier transform of $e^{-\frac{x^2}{2}}$ is $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. Given that $F\left[e^{-\frac{x^2}{4}}\right] = \frac{e^{-x^2}}{\sqrt{\pi}}$.			7																
		UNIT - 4																			
7	a)	Derive the three level finite difference formula to solve numerically the one dimensional wave equation $u_{tt} = c^2 u_{xx}$.	1	1	6																
	b)	Find the numerical solution of the parabolic equation $u_t = u_{xx}$ under the conditions $u(0, t) = 0$, $u(1, t) = 0$, $t \geq 0$ and $u(x, 0) = \sin \pi x$, $0 \leq x \leq 1$ by taking $h = 1/4$ and $k = 1/96$ using Schmidt explicit method up to two time levels.	1	1	7																
	c)	Solve numerically $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(0, t) = 0$, $u(4, t) = 0$, $u_t(x, 0) = 0$ and $u(x, 0) = x(4-x)$ by taking $h = 1$, $k = 0.5$ up to two time levels.	1	1	7																
		OR																			

	8	a)	Derive the Bandre-Schmidt formula to solve numerically the one-dimensional heat equation $u_t = c^2 u_{xx}$.			6
		b)	Solve the initial boundary value problem $u_t = u_{xx}$, at $t = 0.002$ under the conditions $u(0, t) = 0 = u(1, t)$ and $u(0, t) = f(x)$, $0 \leq x \leq 1$ using Schmidt method by taking $h = 0.1, k = 0.001$, where $f(x) = \begin{cases} 2x, & 0 \leq x \leq 1/2 \\ 2(1-x) & 1/2 \leq x \leq 1 \end{cases}$.			7
		c)	Find the numerical solution $u(x, t)$ of hyperbolic equation $u_{tt} = u_{xx}$ under the conditions $u(0, t) = 0, u(1, t) = 0, u_t(x, 0) = 0$ and $u(x, 0) = \sin \pi x$, $0 \leq x \leq 1$, by taking $h = 1/4$ and $k = 1/5$. Compute $u(x, t)$ up to two time levels.			7
			UNIT - 5			
	9	a)	A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is a Catenary.	1	1	6
		b)	Find the extremal of the functional $I = \int_{x_1}^{x_2} (y^2 + y'^2 + 2ye^x) dx$.	1	1	7
		c)	Solve $u_{n+2} + 2u_{n+1} + u_n = n$ with $u_0 = u_1 = 0$ using Z-transform.	1	1	7
			OR			
	10	a)	Derive the Euler's equation in the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.	1	1	6
		b)	Show that the extremal of $I = \int_{x_1}^{x_2} \sqrt{y(1+y'^2)} dx$ is a parabola.	1	1	7
		c)	Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$ using Z-transform.	1	1	7
