

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Course Code / Branch:

Duration: 3 hrs.

23MA3BSTFN (Common to all branches except Civil Engg. And CS-Stream)

Max Marks: 100

22MA3BSTFN (Common to all branches except CS-Stream)

Course: Transform Calculus, Fourier Series and Numerical Techniques

Instructions: 1. All questions have internal choices.

2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Obtain the Laplace transform of the function $f(t) = e^{-t}(3 + \sqrt{t}) + t \sin t$.	1	1	6
	b)	Obtain the Laplace transform of a periodic function $f(t)$ with a period 2 defined by $f(t) = \begin{cases} 2t, & 0 \leq t < 1 \\ 4, & 1 \leq t < 2 \end{cases}$.	1	1	7
	c)	Solve the differential equation $4y'' + 24y' + 20y = 200$, $y(0) = 0$, $y'(0) = 0$ using Laplace transform method.	1	1	7
OR					
2	a)	Evaluate (i) $L\left(e^{-t} \int_0^t \frac{\sin t}{t} dt\right)$ (ii) $L[t \sin^2 t]$	1	1	6
	b)	Express the function $f(t) = \begin{cases} t, & 0 \leq t < 1 \\ 2-t, & 1 \leq t < 2 \\ 0, & t \geq 2 \end{cases}$ in terms of the unit step function and hence obtain its Laplace transform.	1	1	7
	c)	Obtain the inverse Laplace transform of the following functions. (i) $F(s) = \frac{s-1}{s^2+6s+8}$ (ii) $F(s) = \frac{3}{(s+2)(s+3)}$.	1	1	7
UNIT - 2					
3	a)	Find the Fourier series of the function $f(x) = x^2$ over the interval $(-\pi, \pi)$.	1	1	6
	b)	Obtain the Fourier series of a square wave function given by $f(x) = \begin{cases} k, & -1 < x < 0 \\ -k, & 0 < x < 1 \end{cases}$ with $f(x+2) = f(x)$.	1	1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Obtain the constant term and the coefficients of the first cosine and sine terms in the Fourier expansion of y from the table:	1	1	7																		
		<table border="1"> <tr> <td>x</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>y</td><td>9</td><td>18</td><td>24</td><td>28</td><td>26</td><td>20</td></tr> </table>	x	0	1	2	3	4	5	y	9	18	24	28	26	20							
x	0	1	2	3	4	5																	
y	9	18	24	28	26	20																	
		OR																					
4	a)	Find the complex form of Fourier series of $f(x) = e^{-x}$ in the interval $(-1, 1)$.	1	1	6																		
	b)	Find the Fourier series expansion of a periodic function $f(x) = \begin{cases} \pi - x & 0 \leq x \leq \pi \\ x - \pi & \pi \leq x \leq 2\pi \end{cases}$	1	1	7																		
	c)	Obtain the Fourier series of y up to the first harmonic and amplitude of the first harmonic for the following data:	1	1	7																		
		<table border="1"> <tr> <td>x</td><td>45</td><td>90</td><td>135</td><td>180</td><td>225</td><td>270</td><td>315</td><td>360</td></tr> <tr> <td>y</td><td>4</td><td>3.8</td><td>2.4</td><td>2</td><td>-1.5</td><td>0</td><td>2.8</td><td>3.4</td></tr> </table>	x	45	90	135	180	225	270	315	360	y	4	3.8	2.4	2	-1.5	0	2.8	3.4			
x	45	90	135	180	225	270	315	360															
y	4	3.8	2.4	2	-1.5	0	2.8	3.4															
		UNIT - 3																					
5	a)	Obtain the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & \text{for } x \leq 1 \\ 0, & \text{for } x > 1 \end{cases}$.	1	1	6																		
	b)	Find the Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$ $a > 0$.	1	1	7																		
	c)	Using Fourier transform techniques, solve the integral equation $\int_0^\infty f(x) \cos ax dx = \begin{cases} 1 - \alpha, & 0 \leq \alpha \leq 1 \\ 0, & \alpha > 1 \end{cases}$	1	1	7																		
		OR																					
6	a)	Obtain the Fourier cosine transform of $f(x) = e^{-ax} \cos ax$.	1	1	6																		
	b)	Find the inverse Fourier transform of $F(s) = e^{-s^2}$.	1	1	7																		
	c)	Use convolution theorem to find the inverse Fourier transform of $\frac{1}{(1+s^2)^2}$, given that $\frac{2}{(1+s^2)}$ is the Fourier transform of $e^{- x }$.	1	1	7																		
		UNIT - 4																					
7	a)	Derive the Bredre-Schmidt formula to solve numerically the one-dimensional heat equation $u_t = c^2 u_{xx}$.	1	1	6																		
	b)	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ using Schmidt method with the initial condition $u(x, 0) = \sin(\pi x)$, $0 \leq x \leq 1$ and the boundary conditions $u(0, t) = 0$, $u(1, t) = 0$. Carryout the computations for two-time levels taking $h = \frac{1}{4}$ and $k = \frac{1}{48}$.	1	1	7																		
	c)	By using the three-level formula, solve the hyperbolic equation $u_{tt} = 4u_{xx}$ subject to the boundary conditions $u(0, t) = 0$, $u(4, t) = 0$, $t \geq 0$ and the initial conditions $\frac{\partial u}{\partial t}(x, 0) = 0$, $u(x, 0) = x(4 - x)$, $0 \leq x \leq 4$. Carryout the computations up to two time levels taking $h = 1$ and $k = 1/2$.	1	1	7																		
		OR																					

	8	a)	Derive the three level finite difference formula to solve numerically the one dimensional wave equation $u_{tt} = c^2 u_{xx}$.	1	1	6
		b)	Apply Bredre-Schmidt formula to solve $\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$ using with the initial condition $u(x, 0) = x(4 - x)$, $0 < x < 4$, and the boundary conditions $u(0, t) = u(4, t) = 0$, $t \geq 0$. Carryout the computations up to two time levels taking $h = 1$.	1	1	7
		c)	Evaluate the pivotal values of the equation $u_{tt} = 16u_{xx}$ taking $h = 1$ and $k = 0.25$ up to $t = 0.5$. The boundary conditions are $u(0, t) = u(5, t) = 0$ and initial conditions $u(x, 0) = x^2(5 - x)$ and $\frac{\partial u}{\partial t}(x, 0) = 0$.	1	1	7
		UNIT - 5				
	9	a)	Find the path on which a particle in the absence of friction, will slide from one point to another in the shortest time under the action of gravity.	1	1	6
		b)	Show that the curve joining the points $(1, 0)$ and $(2, 1)$ for which $I = \int_1^2 \frac{1}{x} \sqrt{1 + y'^2} dx$ is an extremum is a circle.	1	1	7
		c)	Solve the difference equation $u_{n+2} - 2u_{n+1} + u_n = 2^n$ with $u_0 = 2$, $u_1 = 1$.	1	1	7
		OR				
	10	a)	Show that the necessary condition for $I = \int_{x_1}^{x_2} f(x, y, y') dx$ to be an extremum is that $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.	1	1	6
		b)	Discuss the Hanging cable problem.	1	1	7
		c)	Solve the difference equation $y_{n+2} - 4y_{n+1} + 4y_n = 0$ with $y_0 = 1$, $y_1 = 0$.	1	1	7
