

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science and Business Systems

Course Code: 24MA4BSABS

Course: Foundations of Algebra for Business Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Each unit has an internal choice; answer one complete question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Show that the set of all integers \mathbb{Z} is a group with respect to addition.	1	1	6
	b)	Show that the Klein-4 group $A = \{e, a, b, c\}$ where e is identity element is an abelian group.	1	1	7
	c)	Prove that the set $\{0, 1, 2, 3, \dots, p-1\} \pmod{p}$, where p is a prime, is a field with respect to operations addition (\pmod{p}) and multiplication (\pmod{p}) .	1	1	7
OR					
2	a)	Define sub group of a group. Let $H = \{0, 2, 4\}$. Show that $(H, +)$ is a subgroup of $(\mathbb{Z}_6, +)$.	1	1	6
	b)	Define abelian group and show that fourth root of unity is an abelian group.	1	1	7
	c)	Prove that the set of integers \mathbb{Z} is a commutative ring in which addition and multiplication are defined as $a \oplus b = a + b - 1$ and $a \odot b = a + b - ab$ where $a, b \in \mathbb{Z}$.	1	1	7
UNIT - 2					
3	a)	Consider the matrix $A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -1 & 0 \\ 1 & 4 & -2 \end{bmatrix}$ which defines a linear operator on \mathbb{R}^3 . Find the matrix of the linear transformation relative to the basis $S = \{u_1, u_2, u_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$.	1	1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Find and sketch the images of the unit square and the unit circle under the affine transformation $T(u) = Au + v$ defined by the matrix</p> $A = \begin{bmatrix} 1 & -1 \\ \sqrt{2} & -\sqrt{2} \\ 1 & 1 \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$ <p>and the vector $v = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.</p>	1	1	7
	c)	<p>Find the change-of-basis matrix P from S to E in \mathbb{R}^3 when $E = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ and $S = \{(1, 0, 1), (2, 1, 2), (1, 2, 2)\}$. Hence find change-of-basis matrix Q from E to S.</p>	1	1	7
OR					
4	a)	<p>Discuss the following maps on \mathbb{R}^2 and represent them graphically:</p> <ol style="list-style-type: none"> Horizontal contraction or expansion. Vertical contraction or expansion. Vertical shear. 	1	1	6
	b)	<p>Given $G: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ and $S = \{u_1, u_2\} = \{(1, 3), (2, 5)\}$ is the basis of \mathbb{R}^2 and $G(x, y) = (2x - 7y, 4x + 3y)$, verify $[G]_s \cdot [v]_s = [G(v)]_s$ for the vector $v = (4, -3)$ in \mathbb{R}^2.</p>	1	1	7
	c)	<p>Is T the linear operator on \mathbb{R}^3 defined by $T(x, y, z) = (2x, 4x - y, 2x + 3y - z)$ invertible.? If so, find T^{-1} and T^{-2}.</p>	1	1	7
UNIT - 3					
5	a)	<p>Consider $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 4 \\ 1 & 4 & 6 \end{bmatrix}$ and the vectors $u = \begin{bmatrix} 1 \\ \alpha \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$. The inner product $\langle u, v \rangle = u^T A v$. Find the value of α if it is known that the vectors u and v are orthogonal and hence find the length of u relative to the given inner product.</p>	1	1	6
	b)	<p>Let $P_2(t)$ is the vector space of polynomials of degree ≤ 2 with $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Find a basis of the subspace W orthogonal to $h(t) = 2t + 1$.</p>	1	1	7
	c)	<p>Solve the system of equations $AX = B$ where $A = \begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 7 \\ 3 \\ 1 \end{bmatrix}$ by QR factorization method.</p>	1	1	7
OR					

6	a)	Find the angle between the vectors $A = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ where $\langle A, B \rangle = \text{Tr}(B^T A)$.	1	1	6
	b)	Apply the Gram-Schmidt Orthogonalization to the basis vectors $v_1 = (1, 0, 0)$, $v_2 = (0, 1, 0)$ and $v_3 = (0, 0, 1)$ equipped with the inner product defined by $\langle x \ y \rangle = 2x_1y_1 + 2x_2y_2 + x_3y_3 - x_2y_3 - x_3y_2$.	1	1	7
	c)	Find the least square parabola of the form $y = a + bx + cx^2$ for the data (1, 1), (2, 4), (3, 7) and (4, 5).	1	1	7
UNIT - 4					
7	a)	Apply Cayley-Hamilton Theorem to compute A^4 given $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$.	1	1	6
	b)	Find the eigenspaces of the linear transformation $T: P_2(t) \rightarrow P_2(t)$ defined by $T(f(t)) = (2a - c)t^2 + (2a + b - 2c)t + (-a + 2c)$ where $f(t) = at^2 + bt + c$.	1	1	7
	c)	Find the characteristic and minimal polynomials of $\begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix}$.	1	1	7
OR					
8	a)	Apply Cayley-Hamilton Theorem to compute A^{-2} and A^{-3} if $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$.	1	1	6
	b)	Obtain the algebraic and geometric multiplicity of the eigenvalues of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ by finding the eigenspaces.	1	1	7
	c)	Find the Jordan canonical form of $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 0 \\ 1 & -2 & 3 \end{bmatrix}$.	1	1	7
UNIT - 5					
9	a)	Find nature of the quadratic form $x^2 + 5y^2 + z^2 + 2xy + 6xz + 2yz$ and hence write its canonical form.	1	1	10
	b)	Determine a singular value decomposition of $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$.	1	1	10
OR					

	10	a)	Orthogonally diagonalize $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$.	1	1	10
		b)	Reduce the dimension of the data given below from 2 to 1 using principal component analysis.	1	1	10

B.M.S.C.E. - EVEN SEM 2024-25