

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## February 2025 Semester End Main Examinations

**Programme: B.E.**

**Semester: IV**

**Branch and Course Code:**

**Duration: 3 hrs.**

**23MA4BSCPS (AS/ME/ECE/ETE/EIE)**

**Max Marks: 100**

**22MA4BSCPS (AS/ME/EEE/ECE/ETE/MD/CIVIL/EIE)**

**Course: Complex Analysis, Probability and Statistical Methods**

### Instructions:

1. All units have internal choices, answer one complete question from each unit.
2. Missing data, if any, may be suitably assumed.
3. Use of Statistical tables is permitted.

| <b>UNIT - 1</b> |    |                                                                                                                                                                             | <b>CO</b> | <b>PO</b> | <b>Marks</b> |
|-----------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------|
| 1               | a) | Derive Cauchy-Riemann equations in polar form.                                                                                                                              | 1         | 1         | <b>6</b>     |
|                 | b) | Construct the analytic function $f(z) = u(x, y) + i v(x, y)$ whose real part is $\frac{y}{x^2 + y^2}$ by Milne-Thomson method and hence find its imaginary part.            | 1         | 1         | <b>7</b>     |
|                 | c) | Verify Cauchy's theorem for the integral of $\frac{1}{z}$ taken over the boundary of the triangle having vertices (1,2), (1,4) and (3,2).                                   | 1         | 1         | <b>7</b>     |
| <b>OR</b>       |    |                                                                                                                                                                             |           |           |              |
| 2               | a) | Show that $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ is harmonic and find its harmonic conjugate by constructing the analytic function $f(z) = u + iv$ using Milne-Thomson method. | 1         | 1         | <b>6</b>     |
|                 | b) | Show that the transformation $w = z^2$ transforms the lines parallel to the coordinate axes in $z$ -plane to the parabolic curves in $w$ -plane.                            | 1         | 1         | <b>7</b>     |
|                 | c) | Apply Cauchy's integral formula to evaluate $\int_C \frac{z+4}{z^2 + 2z + 5} dz$ where $C$ is $ z+1-i =2$ .                                                                 | 1         | 1         | <b>7</b>     |
| <b>UNIT - 2</b> |    |                                                                                                                                                                             |           |           |              |
| 3               | a) | If $x^3 + 2x^2 - x + 1 = aP_0(x) + bP_1(x) + cP_2(x) + dP_3(x)$ , then find the values of $a, b, c$ and $d$ .                                                               | 1         | 1         | <b>6</b>     |
|                 | b) | Prove that (i) $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$ (ii) $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$ .                                                            | 1         | 1         | <b>7</b>     |
|                 | c) | Obtain the series solution of the Legendre's differential equation.                                                                                                         | 1         | 1         | <b>7</b>     |
| <b>OR</b>       |    |                                                                                                                                                                             |           |           |              |
| 4               | a) | Prove that (i) $J_{-n}(x) = (-1)^n J_n(x)$ (ii) $J_n(-x) = (-1)^n J_n(x)$ where $n$ is a positive integer.                                                                  | 1         | 1         | <b>6</b>     |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|                            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |     |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|----------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----|------|------|----|-----|----------|-----|------------------------|-----|----|------|-----|-----|----|----|-----|-----|-----|--|--|--|--|
|                            | b)  | Derive the generating function for $J_n(x)$ in the form $e^{\frac{x(t-1)}{2(t-t)}} = \sum_{n=-\infty}^{\infty} t^n J_n(x)$                                                                                                                                                                                                                                                                                                                                                                                               | 1                          | 1   | 7    |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|                            | c)  | Obtain the series solution of Bessel's differential equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                          | 1   | 7    |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| <b>UNIT - 3</b>            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |     |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| 5                          | a)  | Compute the coefficient of rank correlation between industrial production and export using the following data and comment on the result.                                                                                                                                                                                                                                                                                                                                                                                 | 1                          | 1   | 6    |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|                            |     | <table border="1"> <tr><td>Production (in Crore tons)</td><td>55</td><td>56</td><td>58</td><td>59</td><td>60</td><td>61</td><td>62</td></tr> <tr><td>Export (in Crore tons)</td><td>35</td><td>38</td><td>37</td><td>39</td><td>44</td><td>43</td><td>45</td></tr> </table>                                                                                                                                                                                                                                              | Production (in Crore tons) | 55  | 56   | 58   | 59 | 60  | 61       | 62  | Export (in Crore tons) | 35  | 38 | 37   | 39  | 44  | 43 | 45 |     |     |     |  |  |  |  |
| Production (in Crore tons) | 55  | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58                         | 59  | 60   | 61   | 62 |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| Export (in Crore tons)     | 35  | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37                         | 39  | 44   | 43   | 45 |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|                            | b)  | In a partially destroyed laboratory record, only the lines of regression of $y$ on $x$ and $x$ on $y$ are available as $4x-5y+33=0$ and $20x-9y=107$ respectively. Calculate $\bar{x}$ , $\bar{y}$ and the coefficient of correlation between $x$ and $y$ .                                                                                                                                                                                                                                                              | 1                          | 1   | 7    |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|                            | c)  | If $P$ is the pull required to lift a load $W$ by means of a pulley block, find a linear law of the form $P = a + bW$ connecting $P$ and $W$ using the following data:                                                                                                                                                                                                                                                                                                                                                   | 1                          | 1   | 7    |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|                            |     | <table border="1"> <tr><td><math>P</math></td><td>12</td><td>15</td><td>21</td><td>25</td></tr> <tr><td><math>W</math></td><td>50</td><td>70</td><td>100</td><td>120</td></tr> </table>                                                                                                                                                                                                                                                                                                                                  | $P$                        | 12  | 15   | 21   | 25 | $W$ | 50       | 70  | 100                    | 120 |    |      |     |     |    |    |     |     |     |  |  |  |  |
| $P$                        | 12  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21                         | 25  |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| $W$                        | 50  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                        | 120 |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| <b>OR</b>                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |     |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| 6                          | a)  | Compute the coefficient of correlation for the following data:                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                          | 1   | 6    |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|                            |     | <table border="1"> <tr><td><math>x</math></td><td>21</td><td>23</td><td>30</td><td>54</td><td>57</td><td>58</td></tr> <tr><td><math>y</math></td><td>60</td><td>71</td><td>72</td><td>83</td><td>110</td><td>84</td></tr> </table>                                                                                                                                                                                                                                                                                       | $x$                        | 21  | 23   | 30   | 54 | 57  | 58       | $y$ | 60                     | 71  | 72 | 83   | 110 | 84  |    |    |     |     |     |  |  |  |  |
| $x$                        | 21  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                         | 54  | 57   | 58   |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| $y$                        | 60  | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72                         | 83  | 110  | 84   |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|                            | b)  | Fit a geometric curve $y = ax^b$ to the following data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                          | 1   | 7    |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|                            |     | <table border="1"> <tr><td><math>x</math></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr><td><math>y</math></td><td>0.5</td><td>2</td><td>4.5</td><td>8</td><td>12.5</td></tr> </table>                                                                                                                                                                                                                                                                                                                 | $x$                        | 1   | 2    | 3    | 4  | 5   | $y$      | 0.5 | 2                      | 4.5 | 8  | 12.5 |     |     |    |    |     |     |     |  |  |  |  |
| $x$                        | 1   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                          | 4   | 5    |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| $y$                        | 0.5 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5                        | 8   | 12.5 |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|                            | c)  | <p>The following results were obtained from the records of age (<math>x</math>) and blood pressure (<math>y</math>) of a group of 10 men.</p> <table border="1"> <tr><td></td><td><math>x</math></td><td><math>y</math></td></tr> <tr><td>Mean</td><td>53</td><td>142</td></tr> <tr><td>Variance</td><td>130</td><td>165</td></tr> </table> <p>and <math>\sum(x-\bar{x})(y-\bar{y})=1220</math>.</p> <p>Find the appropriate regression equation and use it to estimate the blood pressure of a man whose age is 45.</p> |                            | $x$ | $y$  | Mean | 53 | 142 | Variance | 130 | 165                    | 1   | 1  | 7    |     |     |    |    |     |     |     |  |  |  |  |
|                            | $x$ | $y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |     |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| Mean                       | 53  | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |     |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| Variance                   | 130 | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |     |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| <b>UNIT - 4</b>            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |     |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| 7                          | a)  | A joint probability distribution is given by the following table:                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                          | 1   | 6    |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|                            |     | <table border="1"> <tr><td></td><td><math>Y</math></td><td>-3</td><td>2</td><td>4</td></tr> <tr><td><math>X</math></td><td></td><td></td><td></td><td></td></tr> <tr><td>1</td><td>0.1</td><td>0.2</td><td>0.2</td><td></td></tr> <tr><td>3</td><td>0.3</td><td>0.1</td><td>0.1</td><td></td></tr> </table>                                                                                                                                                                                                              |                            | $Y$ | -3   | 2    | 4  | $X$ |          |     |                        |     | 1  | 0.1  | 0.2 | 0.2 |    | 3  | 0.3 | 0.1 | 0.1 |  |  |  |  |
|                            | $Y$ | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                          | 4   |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| $X$                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |     |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| 1                          | 0.1 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2                        |     |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
| 3                          | 0.3 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                        |     |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |
|                            |     | Find (i) The marginal distributions (ii) $\text{Cov}(X, Y)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |     |      |      |    |     |          |     |                        |     |    |      |     |     |    |    |     |     |     |  |  |  |  |

|        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |     |    |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|--------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|----|--------|-----|-----|-----|-----|-----|-----|--------|-------|-----|-----|----|-----|----|----|----|----|----|----|--|--|--|
|        | b)  | A source of liquid is known to contain bacteria with the mean number of bacteria per cubic centimeter equal to 3. Ten 1cc test tubes are filled with the liquid. Assuming that Poisson distribution is applicable, calculate the probability that all the test tubes will show growth i.e. contains at least one bacterium each.                                                                                                                | 1      | 1   | 7  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        | c)  | In a normal distribution, 31% of the items are under 45 and 8% are over 64. Obtain the mean and standard deviation of the distribution.                                                                                                                                                                                                                                                                                                         | 1      | 1   | 7  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        |     | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |     |    |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
| 8      | a)  | Derive an expression for mean and variance of Poisson distribution.                                                                                                                                                                                                                                                                                                                                                                             | 1      | 1   | 6  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        | b)  | A manufacturer of air-mail envelopes knows from experience that weight of the envelopes is normally distributed with mean 1.95 gm and standard deviation 0.05 gm. About how many envelopes weighing (i) 2 gm or more (ii) 2.05 gm or more can be expected in a given packet of 100 envelopes.                                                                                                                                                   | 1      | 1   | 7  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        | c)  | The distributions of two independent random variables $X$ and $Y$ defined on the sample space are given by the following tables:                                                                                                                                                                                                                                                                                                                | 1      | 1   | 7  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        |     | <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td><math>X</math></td> <td>0</td> <td>1</td> </tr> <tr> <td><math>P(X)</math></td> <td>0.2</td> <td>0.8</td> </tr> </table> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td><math>Y</math></td> <td>1</td> <td>2</td> <td>3</td> </tr> <tr> <td><math>P(Y)</math></td> <td>0.1</td> <td>0.4</td> <td>0.5</td> </tr> </table> | $X$    | 0   | 1  | $P(X)$ | 0.2 | 0.8 | $Y$ | 1   | 2   | 3   | $P(Y)$ | 0.1   | 0.4 | 0.5 |    |     |    |    |    |    |    |    |  |  |  |
| $X$    | 0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |     |    |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
| $P(X)$ | 0.2 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |     |    |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
| $Y$    | 1   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3      |     |    |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
| $P(Y)$ | 0.1 | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5    |     |    |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        |     | Find the joint probability of $X$ and $Y$ and verify that $\text{COV}(X,Y)=0$                                                                                                                                                                                                                                                                                                                                                                   |        |     |    |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        |     | <b>UNIT - 5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |     |    |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
| 9      | a)  | A machine runs on an average of 125 hours/year. A random sample of 49 machines has an annual average use of 126.9 hours with standard deviation 8.4 hours. Does this suggest to believe that machines are used on the average more than 125 hours annually at 0.05 level of significance?                                                                                                                                                       | 1      | 1   | 6  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        | b)  | The average weekly losses of man-hours due to strikes in an institute before and after a disciplinary program was implemented are as follows: Is there a reason to believe that the disciplinary program is effective at 1% level of significance?                                                                                                                                                                                              | 1      | 1   | 7  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        |     | <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>Before</td> <td>45</td> <td>73</td> <td>46</td> <td>124</td> <td>33</td> <td>57</td> <td>83</td> <td>34</td> <td>26</td> <td>17</td> </tr> <tr> <td>After</td> <td>36</td> <td>60</td> <td>44</td> <td>119</td> <td>35</td> <td>51</td> <td>77</td> <td>29</td> <td>24</td> <td>11</td> </tr> </table>                                                       | Before | 45  | 73 | 46     | 124 | 33  | 57  | 83  | 34  | 26  | 17     | After | 36  | 60  | 44 | 119 | 35 | 51 | 77 | 29 | 24 | 11 |  |  |  |
| Before | 45  | 73                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46     | 124 | 33 | 57     | 83  | 34  | 26  | 17  |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
| After  | 36  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44     | 119 | 35 | 51     | 77  | 29  | 24  | 11  |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        | c)  | A sample analysis of examination results of 500 students was made. It was found that 220 students had failed, 170 had secured third class, 90 had secured second class and 20 had secured first class. Do these figures support the general examination result which is in the ratio 4:3:2:1 for the respective categories? Use the level of significance $\alpha = 5\%$ .                                                                      | 1      | 1   | 7  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        |     | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |     |    |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
| 10     | a)  | An auditor claims that he takes on an average 10.5 days to file income tax returns (I.T. returns). Can this claim be accepted if a random sample shows that he took 13, 19, 15, 10, 12, 11, 14, 18 days to file I.T. returns? Use 0.01 level of significance.                                                                                                                                                                                   | 1      | 1   | 6  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        | b)  | If a random sample data show that 42 men earn on the average $\bar{x}_1 = 744.85$ with S.D. $s_1 = 397.7$ while 32 women earn on the average $\bar{x}_2 = 516.78$ with S.D. $s_2 = 162.523$ , test at 0.05 level of significance whether the average income for men and women is same or not.                                                                                                                                                   | 1      | 1   | 7  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        | c)  | Fit a Poisson distribution to the following data and test for the goodness of fit at $\alpha = 5\%$ .                                                                                                                                                                                                                                                                                                                                           | 1      | 1   | 7  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
|        |     | <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td><math>x</math></td> <td>0</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> </tr> <tr> <td><math>f</math></td> <td>419</td> <td>352</td> <td>154</td> <td>56</td> <td>19</td> </tr> </table>                                                                                                                                                                  | $x$    | 0   | 1  | 2      | 3   | 4   | $f$ | 419 | 352 | 154 | 56     | 19    |     |     |    |     |    |    |    |    |    |    |  |  |  |
| $x$    | 0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2      | 3   | 4  |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |
| $f$    | 419 | 352                                                                                                                                                                                                                                                                                                                                                                                                                                             | 154    | 56  | 19 |        |     |     |     |     |     |     |        |       |     |     |    |     |    |    |    |    |    |    |  |  |  |

\*\*\*\*\*