

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E

Branch: AS/CV/EEE/ECE/EIE/ML/ETE

Course Code: 19MA4BSEM4

Course: Engineering Mathematics-4

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 14.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) If θ is the acute angle between the regression lines relating to the variables x and y then show that $\tan(\theta) = \left(\frac{1-r^2}{r}\right) \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$. 6

b) Using the method of least squares, fit a relation of the form $y = ab^x$ for the data: 7

x	1	2	3	4	5	6	7
y	87	97	113	129	202	195	193

c) In a normal distribution 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution. Given that $A(0.5) = 0.19$ and $A(1.4) = 0.42$, where $A(z)$ is the area under the standard normal curve from 0 to z . 7

UNIT - II

2 a) Prove that the matrix $P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1/2 & 1/2 & 0 \end{bmatrix}$ is a regular stochastic matrix. 6

b) The joint probability distribution of two random variables X and Y is given below. Find the marginal distribution of X and Y and $\text{Cov}(X, Y)$. 7

	Y	- 3	2	4
X				
1	0.1	0.2	0.2	
3	0.3	0.1	0.1	

c) Three boys A, B, C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C. C is just as likely to throw the ball to B as to A. If C was the first person to throw the ball, find the probability that after three throws
(i) A has the ball (ii) B has the ball and (iii) C has the ball. 7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

3 a) Derive the explicit formula for the solution of one-dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$. 6

b) Solve the initial boundary value problem $u_t = u_{xx}$, up to four-time levels 7
 when $u(0, t) = 0 = u(1, t)$, $t \geq 0$ $u(x, 0) = \begin{cases} 2x, & 0 \leq x \leq 1/2 \\ 2(1-x), & 1/2 \leq x \leq 1 \end{cases}$
 using Bende-Schmidt method by taking $h = 1/4$.

c) The transverse displacement u of a point at a distance x from one end at any time t of a vibrating string satisfies the equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(0, t) = 0$, $u(5, t) = 0$, $t \geq 0$, $u(x, 0) = x(5-x)$, $0 \leq x \leq 5$ and $u_t(x, 0) = 0$. Solve this equation numerically up to two-time levels, with $h = 1$ and $k = 0.5$. 7

UNIT - IV

4 a) Find the harmonic conjugate of $v = \left(r - \frac{1}{r}\right) \sin(\theta)$, $r \neq 0$. 6

b) Determine the analytic function $f(z)$ as a function of z , given 7
 $u - v = (x - y)(x^2 + 4xy + y^2)$.

c) Discuss the transformation $w = z^2$. 7

OR

5 a) Derive Cauchy-Riemann equations in cartesian form. Also show that the real part of an analytic function $f(z) = u + iv$ is harmonic. 6

b) If $f(z)$ is a regular function, then prove that 7

$$\left\{ \frac{\partial}{\partial x} |f(z)| \right\}^2 + \left\{ \frac{\partial}{\partial y} |f(z)| \right\}^2 = |f'(z)|^2$$

c) Find the bilinear transformation which maps the points $\infty, i, 0$ of the Z-plane onto the points $-1, -i, 1$ of the W-plane respectively. Also find the invariant points of the transformation. 7

UNIT - V

6 a) State and prove Cauchy's integral formula. 6

b) Expand the function $f(z) = \frac{z}{(z-1)(z-3)}$ in power series in the following regions: (a) $|z| < 1$ and (b) $1 < |z| < 3$. 7

c) Apply Cauchy's residue theorem to evaluate $\oint_C \frac{z^2}{(z-1)^2(z+2)} dz$, where C is the circle $|z| = \frac{5}{2}$. 7

OR

7 a) Evaluate $\int_0^{2+i} (\bar{z})^2 dz$ along the real axis to 2 and then vertically to $2+i$. 6

b) Evaluate $\int_c \frac{4-3z}{z(z-1)(z-2)} dz$ where $c: |z| = \frac{3}{2}$ using Cauchy's integral formula. 7

c) Find the poles and residues at each pole for $f(z) = \frac{z^2}{z^4 - 1}$ which lies inside $|z| = 2$. 7

SUPPLEMENTARY EXAMS 2023