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Instructions:  1. Answer any FIVE full questions, choosing one full question from each unit. 

          2. Missing data, if any, may be suitably assumed.  
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  UNIT - I  

1 a) If   is the acute angle between the regression lines relating to the variables x 

and y then show that ( )
2

2 2

1
tan .

x y

x y

r

r

 


 

 −
=  

+ 
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b) Using the method of least squares, fit a relation of the form 
xy ab=   for the 

data: 

x 1 2 3 4 5 6 7 

y 87 97 113 129 202 195 193 
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 c) In a normal distribution 31% of the items are under 45 and 8% are over 64. 

Find the mean and standard deviation of the distribution.  Given that 

( )0.5 0.19A =  and ( )1.4 0.42A = , where ( )A z  is the area under the standard 

normal curve from 0 to z . 

7 

  
UNIT - II 

 

 
2 

 
a) Prove that the matrix

0 1 0

0 0 1

1/ 2 1/ 2 0

P

 
 

=
 
  

 is a regular stochastic matrix. 
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 b) The joint probability distribution of two random variables X  and Y  is given 

below. Find the marginal distribution of X  and Y  and ( )ov ,C X Y . 

            Y 

X 
- 3 2 4 

1 0.1 0.2 0.2 

3 0.3 0.1 0.1 
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 c) Three boys A, B, C are throwing a ball to each other. A always throws the ball 

to B and B always throws the ball to C.  C is just as likely to throw the ball to 

B as to A. If C was the first person to throw the ball, find the probability that 

after three throws 

 (i) A has the ball     (ii) B has the ball and     (iii) C has the ball. 
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  UNIT - III  

3 a) Derive the explicit formula for the solution of one-dimensional wave 

equation 
2 2

2

2 2
.

u u
c

t x

 
=

 
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b) Solve the initial boundary value problem t xxu u= , up to four-time levels 

when  ( ) ( )0, 0 1,u t u t= = ,  0t  ( )
( )

2 , 0 1/ 2
,0

2 1  , 1/ 2 1

x x
u x

x x

 
= 

−  
 

using Bendre-Schmidt method by taking 1/ 4 .h =  
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 c) The transverse displacement u  of a point at a distance x  from one end at any 

time t  of a vibrating string satisfies the equation 
2 2

2 2
4

u u

t x

 
=

   subject to the 

conditions ( )0, 0u t = , ( )5, 0, t 0,u t =  ( ) ( ),0 5u x x x= − , 0 5x 
 
and 

( ),0 0tu x = . Solve this equation numerically up to two-time levels, with 1h =

and 0.5k = . 
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  UNIT - IV  
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a) Find the harmonic conjugate of ( )
1

sinv r
r


 

= − 
 

, 0r  . 
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b) Determine the analytic function ( )f z  as a function of z , given 

( )( )2 24 .u v x y x xy y− = − + +  
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c) Discuss the transformation w = 
2.z  
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  OR  

5 a) Derive Cauchy-Riemann equations in cartesian form. Also show that the real 

part of an analytic function ( )f z u iv= +  is harmonic. 
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b) If ( )f z  is a regular function, then prove that 

( ) ( ) ( )
22

2

f z f z f z
x y

   
+ =   

    
. 
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 c) Find the bilinear transformation which maps the points , , 0i of the Z-plane 

onto the points -1, -i, 1 of the W-plane respectively. Also find the invariant 

points of the transformation. 
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  UNIT - V  

6 a) State and prove Cauchy’s integral formula. 6 

  

b) Expand the function ( )
( 1)( 3)

z
f z

z z
=

− −
 in power series in the following 

regions:    (a) 1z   and (b) 1 3 .z   
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c) Apply Cauchy’s residue theorem to evaluate 
( ) ( )

2

2
1 2C

z
dz

z z− +
 ,  where C  

is the circle 
5

.
2

z =  
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  OR  
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a) Evaluate ( )
2

2

0

i

z dz

+

  along the real axis to 2 and then vertically to 2 i+ . 
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b) Evaluate 
( )( )

4 3

1 2
c

z
dz

z z z

−

− −  where 
3

:
2

c z = using Cauchy’s integral 

formula. 
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c) Find the poles and residues at each pole for
2

4
( )

1

z
f z

z
=

−
which lies inside 

2z = . 
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